
更新时间：2019-11-21 10:45:02

25 经典并发容器，多线程面试必备—深入解析ConcurrentHashMap下

通过上一节的学习，我们了解了 ConcurrentHashMap 的核心 hash 算法实现。本节我们将继续学习 put 相关的几个

方法以及 get 方法。

上节提到对哈希表的加载是在第一次 put 操作时进行的，put 方法中相关的代码如下：

那么接下来我们就来看看 initTable 方法，如何创建哈希表。

1、initTable 源码分析

initTable 是初始化 table 的方法。内部考虑了多线程的并发安全。我们直接看 initTable 的代码：

青年是学习智慧的时期，中年是付诸实践的时期。

—— 卢梭

if (tab == null || (n = tab.length) == 0)
 tab = initTable();

file:///read/49/article/959
file:///read/49/article/1224

里面有个关键的值 sizeCtl，这个值有多个含义。

1、-1 代表有线程正在创建 table；

2、-N 代表有 N-1 个线程正在复制 table；

3、在 table 被初始化前，代表根据构造函数传入的值计算出的应被初始化的大小；

4、在 table 被初始化后，则被设置为 table 大小 的 75%，代表 table 的容量（数组容量）。

initTable 中使用到 1 和 4，2 和 3 在其它方法中会有使用。下面我们可以先看下 ConcurrentHashMap 的构造方

法，里面会使用上面的 3 。

2、ConcurrentHashMap 构造函数源码分析

ConcurrentHashMap 带容量参数的构造函数源码如下：

private final Node<K,V>[] initTable() {
 Node<K,V>[] tab; int sc;
 while ((tab = table) == null || tab.length == 0) {
 //如果sizeCtl<0,那么有其他线程正在创建table，所以本线程让出CPU的执行权。直到table创建完成，while循环跳出。if中同时还把sizeCtl的值赋值
给了sc。
 if ((sc = sizeCtl) < 0)
 Thread.yield(); // lost initialization race; just spin
 //以CAS方式修改sizeCtl为-1，表示本线程已经开始创建table的工作。
 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
 try {
 //再次确认是否table还是空的
 if ((tab = table) == null || tab.length == 0) {
 //如果sc有值，那么使用sc的值作为table的size，否则使用默认值16
 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
 @SuppressWarnings("unchecked")
 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
 table = tab = nt;
 //sc被设置为table大小的3/4
 sc = n - (n >>> 2);
 }
 } finally {
 //sizeCtl被设置为table大小的3/4
 sizeCtl = sc;
 }
 break;
 }
 }
 return tab;
}

public ConcurrentHashMap(int initialCapacity) {
 if (initialCapacity < 0)
 throw new IllegalArgumentException();
 //如果传入的初始化容量值超过最大容量的一半，那么sizeCtl会被设置为最大容量。
 //否则通过tableSizeFor方法就算出一个2的n次方数值作为size
 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
 MAXIMUM_CAPACITY :
 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
 this.sizeCtl = cap;
}

这是一个有参数的构造方法。如果你对未来存储的数据量有预估，我们可以指定哈希表的大小，避免频繁的扩容操

作。tableSizeFor 这个方法确保了哈希表的大小永远都是 2 的 n 次方。这里我们回想一下上一节的内容，如果 size

不是 2 的 n 次方，那么 hash 算法计算的下标发生的碰撞概率会大大增加。因此通过 tableSizeFor 方法确保了返回

大于传入参数的最小 2 的 n 次方。注意这里传入的参数不是 initialCapacity，而是 initialCapacity 的 1.5 倍 + 1。这

样做是为了保证在默认 75% 的负载因子下，能够足够容纳 initialCapacity 数量的元素。讲到这里你一定好奇

tableSizeFor 是如何实现向上取得最接近入参 2 的 n 次方的。下面我们来看 tableSizeFor 源代码：

依旧是二进制按位操作，这样一顿操作后，得到的数值就是大于 c 的最小 2 的 n 次。我们推演下过程，假设 c 是

9：

1、int n = 9 - 1

n=8

2、n |= n >>> 1

n=1000

n >>> 1=0100

两个值按位或后

n=1100

3、n |= n >>> 2

n=1100

n >>> 2=0011

n=1111

到这里可以看出规律来了。如果 c 足够大，使得 n 很大，那么运算到 n |= n >>> 16 时，n 的 32 位都为 1。

总结一下这一段逻辑，其实就是把 n 有数值的 bit 位全部置为 1。这样就得到了一个肯定大于等于 n 的值。我们

再看最后一行代码，最终返回的是 n+1，那么一个所有位都是 1 的二进制数字，+1 后得到的就是一个 2 的 n 次方

数值。

关于 ConcurrentHashMap (int initialCapacity) 构造函数的分析我们总结下：

1、构造函数中并不会初始化哈希表；

private static final int tableSizeFor(int c) {
 int n = c - 1;
 n |= n >>> 1;
 n |= n >>> 2;
 n |= n >>> 4;
 n |= n >>> 8;
 n |= n >>> 16;
 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

2、构造函数中仅设置哈希表大小的变量 sizeCtl；

3、initialCapacity 并不是哈希表大小；

4、哈希表大小为 initialCapacity*1.5+1 后，向上取最小的 2 的 n 次方。如果超过最大容量一半，那么就是最大容

量。

3、Put 方法中，保存 key/value 源码分析

前面我们还一直围绕在哈希表的创建在做讲解。接下来我们分析真正往哈希表存储数据的逻辑，我们先进行下回

顾：

这段代码主逻辑如下：

第一种情况：hash 值映射哈希表对应位置存储的是链表：

1、遍历 hash 值映射位置的链表；

 else {
 V oldVal = null;
 synchronized (f) {
 //再次确认该位置的值是否已经发生了变化
 if (tabAt(tab, i) == f) {
 //fh大于0，表示该位置存储的还是链表
 if (fh >= 0) {
 binCount = 1;
 //遍历链表
 for (Node<K,V> e = f;; ++binCount) {
 K ek;
 //如果存在一样hash值的node，那么根据onlyIfAbsent的值选择覆盖value或者不覆盖
 if (e.hash == hash &&
 ((ek = e.key) == key ||
 (ek != null && key.equals(ek)))) {
 oldVal = e.val;
 if (!onlyIfAbsent)
 e.val = value;
 break;
 }
 Node<K,V> pred = e;
 //如果找到最后一个元素，也没有找到相同hash的node，那么生成新的node存储key/value，作为尾节点放入链表。
 if ((e = e.next) == null) {
 pred.next = new Node<K,V>(hash, key,
 value, null);
 break;
 }
 }
 }
 //下面的逻辑处理链表已经转为红黑树时的key/value保存
 else if (f instanceof TreeBin) {
 Node<K,V> p;
 binCount = 2;
 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
 value)) != null) {
 oldVal = p.val;
 if (!onlyIfAbsent)
 p.val = value;
 }
 }
 }
 }

2、如果存在同样 hash 值的 node，那么根据要求选择覆盖或者不覆盖；

3、如果不存在同样 hash 值的 node，那么创建新的 node 用来保存 key/value，并且放在链表尾部。

第二种情况：hash 值映射哈希表对应位置存储的是红黑树：

通过 TreeBin 对象的 putTreeVal 方法保存 key/value

以上逻辑还是比较清晰和简单。我们继续往下看，保存完 key/value 后，其实并没有结束 put 操作，而是进行了扩

容的操作，代码如下：

binCount 是用来记录链表保存 node 的数量的，可以看到当其大于 TREEIFY_THRESHOLD，也就是 8 的时候进行

扩容。

4、扩容源码分析

首先我们要理解为什么 Map 需要扩容，这是因为我们采用哈希表存储数据，当固定大小的哈希表存储数据越来越

多时，链表长度会越来越长，这会造成 put 和 get 的性能下降。此时我们希望哈希表中多一些桶位，预防链表继续

堆积的更长。接下来我们分析 treeifyBin 方法代码，这个代码中会选择是把此时保存数据所在的链表转为红黑树，

还是对整个哈希表扩容。

if (binCount != 0) {
 if (binCount >= TREEIFY_THRESHOLD)
 treeifyBin(tab, i);
 if (oldVal != null)
 return oldVal;
 break;
}

private final void treeifyBin(Node<K,V>[] tab, int index) {
 Node<K,V> b; int n, sc;
 if (tab != null) {
 //如果哈希表长度小于64，那么选择扩大哈希表的大小，而不是把链表转为红黑树
 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
 tryPresize(n << 1);
 //将哈希表中index位置的链表转为红黑树
 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
 synchronized (b) {
 //下面逻辑将node链表转化为TreeNode链表
 if (tabAt(tab, index) == b) {
 TreeNode<K,V> hd = null, tl = null;
 for (Node<K,V> e = b; e != null; e = e.next) {
 TreeNode<K,V> p =
 new TreeNode<K,V>(e.hash, e.key, e.val,
 null, null);
 if ((p.prev = tl) == null)
 hd = p;
 else
 tl.next = p;
 tl = p;
 }
 //TreeBin代表红黑树，将TreeBin保存在哈希表的index位置
 setTabAt(tab, index, new TreeBin<K,V>(hd));
 }
 }
 }
 }
}

我们再重点看一下 tryPresize，此方法中实现了对数组的扩容，传入的参数 size 是原来哈希表大小的一倍。我们假

定原来哈希表大小为 16，那么传入的 size 值为 32，以此数值作为例子来分析源代码。注意 while 中第一个 if 此时

不会进入，但为了讲解代码我也在注释中一并讲解了，大家看的时候在这个分支中不要以 size=16 作为前提来分

析。

扩容方法 transfer 中会创建新的哈希表，关键代码如下：

//size为32
//sizeCtl为原大小16的3/4，也就是12
private final void tryPresize(int size) {
 //根据tableSizeFor计算出满足要求的哈希表大小，对齐为2的n次方。c被赋值为64，这是扩容的上限，扩容一般都是扩容为原来的2倍，这里c值为了
处理一些特殊的情况，确保扩容能够正常退出。

 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
 tableSizeFor(size + (size >>> 1) + 1);
 int sc;
 //此时sc和sizeCtl均为12，进入while循环
 while ((sc = sizeCtl) >= 0) {
 Node<K,V>[] tab = table; int n;
 //这里处理的table还未初始化的逻辑，这是由于putAll操作不调用initTable，而是直接调用tryPresize
 if (tab == null || (n = tab.length) == 0) {
 //putAll第一次调用时，假设putAll进来的map只有一个元素，那么size传入1，计算出c为2.而sc和sizeCtl都为0，因此n=2
 n = (sc > c) ? sc : c;
 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
 try {
 if (table == tab) {
 @SuppressWarnings("unchecked")
 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
 table = nt;
 //经过计算sc=2
 sc = n - (n >>> 2);
 }
 } finally {
 //sizeCtl设置为2.第二次循环时，因为sc和c相等，都为2，进入下面的else if分支，结束while循环。
 sizeCtl = sc;
 }
 }
 }
 //扩容已经达到C值，结束扩容
 else if (c <= sc || n >= MAXIMUM_CAPACITY)
 break;
 //table已经存在，那么就对已有table进行扩容
 else if (tab == table) {
 int rs = resizeStamp(n);
 //sc小于0，说明别的线程正在扩容，本线程协助扩容
 if (sc < 0) {
 Node<K,V>[] nt;
 //判断是否扩容的线程达到上限，如果达到上限，退出
 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
 transferIndex <= 0)
 break;
 //未达上限，参与扩容，更新sizeCtl值。transfer方法负责把当前哈希表数据移入新的哈希表。
 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
 transfer(tab, nt);
 }
 //本线程为第一个扩容线程，transfer第二个参数传入null，代表需要新建扩容后的哈希表
 else if (U.compareAndSwapInt(this, SIZECTL, sc,
 (rs << RESIZE_STAMP_SHIFT) + 2))
 transfer(tab, null);
 }
 }
}

n<<1 得到的数值为 2n，也就是说每次都是扩容到原来 2 倍，这样保证了哈希表的大小始终为 2 的 n 次方。

扩容的核心代码到这里就分析完了，扩容相关代码还有很多，不过主要的核心思想我们能理解就可以了。

讲到这里我们再回一下 put 方法中最后有如下一行代码：

这行代码其实是对哈希表保存的元素数量进行计数。同时根据当前保存状况，判断是否进行扩容。你可能会问，在

添加元素的过程中不是已经执行了扩容的逻辑了吗？没错，不过上面的扩容逻辑是链表过长引起的。而 addCount

方法中会判断哈希表是否超过 75% 的位置已经被使用，从而触发扩容。扩容的逻辑是基本一致的。

5、get 方法源码分析

本节和前一节耗费了大量笔墨分析 put 的源代码。put 的源代码比较复杂，其实 put 方法的复杂是为了 get 服务，

以提高 get 的效率。相比较 put 方法而言，get 方法就简单多了。我们直接看源代码：

6、总结

int n = tab.length, stride;
......
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];

addCount(1L, binCount);

public V get(Object key) {
 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
 //获取key值的hash值
 int h = spread(key.hashCode());
 //这个if判断中做了如下几件事情：
 //1、哈希表是否存在
 //2、哈希表是否保存了数据，同时取得哈希表length
 //3、哈希表中hash值映射位置保存的对象不为null，并取出给e，e为链表头节点
 if ((tab = table) != null && (n = tab.length) > 0 &&
 (e = tabAt(tab, (n - 1) & h)) != null) {
 //如果e的hash值和传入key的hash值相等
 if ((eh = e.hash) == h) {
 //如果e的key和传入的key引用相同，或者key eaquals ek。那么返回e的value。
 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
 return e.val;
 }
 //如果头节点的hash<0,有两种情况
 //1、hash=-1，正在扩容，该节点为ForwardingNode，通过find方法在nextTable中查找
 //2、hash=-2，该节点为TreeBin，链表已经转为了红黑树。同样通过TreeBin的find方法查找。
 else if (eh < 0)
 return (p = e.find(h, key)) != null ? p.val : null;
 //以上两种条件不满足，说明hash映射位置保存的还是链表头节点，但是和传入key值不同。那么遍历链表查找即可。
 while ((e = e.next) != null) {
 if (e.hash == h &&
 ((ek = e.key) == key || (ek != null && key.equals(ek))))
 return e.val;
 }
 }
 return null;
}


24 经典并发容器，多线程面试必
备—深入解析
ConcurrentHashMap上


26不让我进门，我就在门口一直

等！—BlockingQueue和
ArrayBlockingQueue

通过两小节的学习，我们把 ConcurrentHashMap 中的主要源代码学习完成了，由于篇幅有限，还有很多更细节的

地方没有讲解。如果想继续研究的话，建议把 Node、TreeNode 相关结构看一下。对算法感兴趣的话，可以看一下

红黑树转化的过程。

ConcurrentHashMap 中，通过大量的 CAS 操作加上 Synchronized 来确保线程安全。对 ConcurrentHashMap 的学

习我们把重点放在哈希算法和扩容上，面试的时候是考察的重点。

}

	1、initTable 源码分析
	2、ConcurrentHashMap 构造函数源码分析
	3、Put 方法中，保存 key/value 源码分析
	4、扩容源码分析
	5、get 方法源码分析
	6、总结

