
更新时间：2019-12-25 09:40:02

35拆分你的任务—学习使用Fork/Join框架

本节我们学习 Excutor 的另外一种实现 ForkJoinPool。顾名思义，ForkJoinPool 的核心功能有两个。第一个是

Fork，拆解你的任务。第二个是 Join，合并任务的执行结果。这个场景很常见，比如我们要处理一批数据，由于数

据间没有依赖性，那么我们可以把这一批数据拆解为更小的批次，多线程并行处理。最后再合并处理的结果。

Fork/Join 的核心思想就是分而治之。

1、ForkJoinPool 介绍

ForkJoinPool 自 Java 7 引入。它和 ThreadPoolExecutor 都继承自 AbstractExecutorService，实现了

ExecutorService 和 Executor 接口。ForkJoinPool 用来把大任务切分为小任务，如果切分完小任务还不够小（由你

设置的阈值决定），那么就继续向下切分。经过切分后，最后的任务是金字塔形状，计算完成后向上汇总。如下

图：

读书给人以快乐、给人以光彩、给人以才干。

——培根

file:///read/49/article/1318
javascript:;

ForkJoinPool 处理任务的核心思想可以用如下伪代码表示：

如果一个任务足够小，那么执行任务逻辑。如果不够小，拆分为两个独立的子任务。子任务执行后， 取得两个子任

务的执行结果进行合并。

ForkJoinPool 通过 submit 执行 ForkJoinTask 类型的任务。ForkJoinTask 是抽象类，有着不同的子类实现。比较常

用的是如下两种：

1、RecursiveAction，没有返回值；

2、RecurisiveTask，有返回值。

此外 submit 方法还可以执行 Callable 和 Runnable 的接口实现。

ForkJoinTask 就是我们为代码中的 problem。我来举个例子看具体如何使用。假如让你计算 1-10000 的和，

我们可以把任务拆解为 100 个，每个任务计算 100 个数字之和。代码如下.

Task 代码；

Result solve(Problem problem) {
 if (problem is small)
 directly solve problem
 else {
 split problem into independent parts
 fork new subtasks to solve each part
 join all subtasks
 compose result from subresults
 }
}

Task 继承自 RecursiveTask。递归任务的大小力度为 100。重写的 compute 方法和文章开头的伪代码 solve 是一

样的思路。先判断任务的大小是否在 THRESHOLD 之内。如果已经拆解到 THRESHOLD 内，那么进行计算。如果

任务拆分还没达到 THRESHOLD，那么继续拆解任务。fork 操作会把当前任务放入线程池中来执行。最后再通过

join 取得执行结果做合并。

Client 代码：

我们首先通过静态方法 commonPool 声明一个 ForkJoinPool。commonPool 创建的 ForkJoinPool 满足绝大多数的

应用场景。然后通过 submit 方法提交我们的 Task，计算 1-10000 的和。提交 Task 后，Task 中的 compute 方法

最终会被调用，通过对任务的拆解，以及对任务计算结果的合并，汇总到此处的 Task 中。通过 Task 的 get 方法

获取计算结果。最后关闭线程池。

执行结果如下：

2、ForkJoinPool 原理介绍

public class Task extends RecursiveTask<Integer> {

 private static final int THRESHOLD = 100;
 private int from;
 private int to;

 public Task(int from, int to) {
 super();
 this.from = from;
 this.to = to;
 }

 @Override
 protected Integer compute() {
 if (THRESHOLD > (to - from)) {
 return IntStream.range(from, to + 1)
 .reduce((a, b) -> a + b)
 .getAsInt();
 } else {
 int forkNumber = (from + to) / 2;
 Task left = new Task(from, forkNumber);
 Task right = new Task(forkNumber + 1, to);

 left.fork();
 right.fork();

 return left.join() + right.join();
 }
 }

}

public class Client {
 public static void main(String[] args) throws ExecutionException, InterruptedException {
 ForkJoinPool forkJoinPool = ForkJoinPool.commonPool();
 ForkJoinTask<Integer> result = forkJoinPool.submit(new Task(1, 10000));

 System.out.println("计算结果为"+result.get());
 forkJoinPool.shutdown();
 }
}

计算结果为50005000

ForkJoinPool 中的每个线程都维护自己的工作队列。这是一个双端队列，既可以先进先出，也可以先进后出。简单

来说就是队列两端都可以做出队操作。当每个线程产生新的任务时（比如说调用了 fork 操作），会被加入到队尾。

线程工作的时候会从自己维护的工作队列的 top 做出队操作（LIFO），取得任务来执行。线程还会去其它线程任务

队列窃取任务，此时是从其它队列的 base 取得任务（FIFO）。如下图所示：

下面简单介绍几个常用方法：

1、fork 方法中会判断如果当前线程不是 ForkJoinWorkerThread，则把任务加入 submission queue。否则加入自己

的工作队列中。submission queue 没有关联的线程，是所有线程都可以执行的任务队列。fork 代码如下：

2、join 方法中，自己任务没有执行完，则取的自己任务队列中的任务执行。如果发现自己的任务已经没有了，则会

去窃取其它线程的任务来执行。Join 代码如下：

主要逻辑在 doJoin 中，代码如下：

public final ForkJoinTask<V> fork() {
 Thread t;
 //判断本线程是否为ForkJoinWorkerThread，是的话，加入到自己的workQueue中，否则调用externalPush
 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
 ((ForkJoinWorkerThread)t).workQueue.push(this);
 else
 ForkJoinPool.common.externalPush(this);
 return this;
}

public final V join() {
 int s;
 //取得doJoin后的状态，位运算后判断是否正常，不正常的话抛出异常。正常的话返回计算结果
 if ((s = doJoin() & DONE_MASK) != NORMAL)
 reportException(s);
 return getRawResult();
}


34 谁都不能偷懒-通过
CompletableFuture 组装你的异
步计算单元


36 为多线程们安排一位经理—

Master/Slave模式详解

如果当前线程不是 ForkJoinWorkerThread，则调用 externalAwaitDone。如果是 ForkJoinWorkerThread 那么先通

过 tryUnpush 从自己的 workQueue 的 top 位置取得当前 task，然后调用 doExec 执行。这两步成功的话返回执行

结果 s，否则调用 awaitJoin。这个方法中判断本任务是否执行完成，完成直接返回，否则会尝试窃执行取别的线程

的任务。

3、submit 方法中，会把任务 push 到 submission queue。

ForkJoinPool 通过任务窃取，使得任务的执行更为高效。

3、总结

ForkJoinPool 为我们拆分大任务再汇总小任务计算结果提供了很好的支持。它很适合执行计算密集型的任务。但是

如果你的任务拆分逻辑比计算逻辑还要复杂，ForkJoinPool 并不能为你带来性能的提升，反而会起到负面作用。因

此需要结合自己的场景来选择使用。

}

private int doJoin() {
 int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w;
 return (s = status) < 0 ? s :
 ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
 (w = (wt = (ForkJoinWorkerThread)t).workQueue).
 tryUnpush(this) && (s = doExec()) < 0 ? s :
 wt.pool.awaitJoin(w, this, 0L) :
 externalAwaitDone();
}

	1、ForkJoinPool 介绍
	2、ForkJoinPool 原理介绍
	3、总结

