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03 快速学会分析SQL执行效率（下）

在上一节我们学习了定位慢 SQL 及使用 explain 分析慢 SQL，我们也提到了分析慢 SQL 还有 show profile 和

trace 等方法，本节就重点补充学习这两种方法。

1 show profile 分析慢查询

有时需要确定 SQL 到底慢在哪个环节，此时 explain 可能不好确定。在 MySQL 数据库中，通过 profile，能够更清

楚地了解 SQL 执行过程的资源使用情况，能让我们知道到底慢在哪个环节。

知识扩展：可以通过配置参数 profiling = 1 来启用 SQL 分析。该参数可以在全局和 session 级别来设置。对

于全局级别则作用于整个MySQL 实例，而 session 级别仅影响当前 session 。该参数开启后，后续执行的

SQL 语句都将记录其资源开销，如 IO、上下文切换、CPU、Memory等等。根据这些开销进一步分析当前

SQL 从而进行优化与调整。

下面我们来讲一下如何使用 profile 分析慢查询，大致步骤是：确定这个 MySQL 版本是否支持 profile；确定 profile

是否关闭；开启 profile；执行 SQL；查看执行完 SQL 的 query id；通过 query id 查看 SQL 的每个状态及耗时时

间。

1.1 确定是否支持  profile

我们进行第一步，用下面命令来判断当前 MySQL 是否支持 profile：

当你做成功一件事，千万不要等待着享受荣誉，应该再做那些需要的事。

—— 巴斯德
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从上面结果中可以看出是YES，表示支持profile的。

1.2 查看  profiling 是否关闭的

进行第二步，用下面命令判断 profiling 参数是否关闭（默认 profiling 是关闭的）：

结果显示为 0，表示 profiling 参数状态是关闭的。

1.3 通过  set 开启  profile

Tips：set 时没加 global，只对当前 session 有效。

1.4 执行  SQL 语句

1.5 确定  SQL 的  query id

通过 show profiles 语句确定执行过的 SQL 的 query id：

1.6 查询  SQL 执行详情

通过 show profile for query 可看到执行过的 SQL 每个状态和消耗时间：

mysql> select @@have_profiling;

+------------------+
| @@have_profiling |
+------------------+
| YES              |
+------------------+

1 row in set, 1 warning (0.00 sec)

mysql> select @@profiling;

+-------------+
| @@profiling |
+-------------+
|           0 |
+-------------+

1 row in set, 1 warning (0.00 sec)

mysql> set profiling=1;

Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> select * from t1 where b=1000;

mysql> show profiles;
+----------+------------+-------------------------------+
| Query_ID | Duration   | Query                         |
+----------+------------+-------------------------------+
|        1 | 0.00063825 | select * from t1 where b=1000 |
+----------+------------+-------------------------------+
1 row in set, 1 warning (0.00 sec)



通过以上结果，可以确定 SQL 执行过程具体在哪个过程耗时比较久，从而更好地进行 SQL 优化与调整。

2 trace 分析 SQL 优化器

从前面学到了 explain 可以查看 SQL 执行计划，但是无法知道它为什么做这个决策，如果想确定多种索引方案之间

是如何选择的或者排序时选择的是哪种排序模式，有什么好的办法吗？

从 MySQL 5.6 开始，可以使用 trace 查看优化器如何选择执行计划。

通过trace，能够进一步了解为什么优化器选择A执行计划而不是选择B执行计划，或者知道某个排序使用的排序模

式，帮助我们更好地理解优化器行为。

如果需要使用，先开启 trace，设置格式为 JSON，再执行需要分析的 SQL，最后查看 trace 分析结果（在

information_schema.OPTIMIZER_TRACE 中）。

开启该功能，会对 MySQL 性能有所影响，因此只建议分析问题时临时开启。

下面一起来看下 trace 的使用方法。使用讲解 explain 时创建的表t1做实验。

首先构造如下 SQL (表示取出表 t1 中 a 的值大于 900 并且 b 的值大于 910 的数据，然后按照 a 字段排序)：

我们首先用 explain 分析下执行计划：

通过上面执行计划中 key 这个字段可以看出，该语句使用的是 b 字段的索引 idx_b。实际表 t1 中，a、b 两个字段

都有索引，为什么条件中有这两个索引字段却偏偏选了 b 字段的索引呢？这时就可以使用 trace 进行分析。大致步

骤如下：

mysql> show profile for query 1;
+----------------------+----------+
| Status               | Duration |
+----------------------+----------+
| starting             | 0.000115 |
| checking permissions | 0.000013 |
| Opening tables       | 0.000027 |
| init                 | 0.000035 |
| System lock          | 0.000017 |
| optimizing           | 0.000016 |
| statistics           | 0.000025 |
| preparing            | 0.000020 |
| executing            | 0.000006 |
| Sending data         | 0.000294 |
| end                  | 0.000009 |
| query end            | 0.000012 |
| closing tables       | 0.000011 |
| freeing items        | 0.000024 |
| cleaning up          | 0.000016 |
+----------------------+----------+
15 rows in set, 1 warning (0.00 sec)

select * from t1 where a >900 and b > 910 order  by a;

mysql> set session optimizer_trace="enabled=on",end_markers_in_json=on;
/* optimizer_trace="enabled=on" 表示开启 trace；end_markers_in_json=on 表示 JSON 输出开启结束标记 */



Query OK, 0 rows affected (0.00 sec)

mysql> select * from t1 where a >900 and b > 910 order  by a;
+------+------+------+
| id   | a    | b    |
+------+------+------+
|    1 |    1 |    1 |
|    2 |    2 |    2 |

......

| 1000 | 1000 | 1000 |
+------+------+------+
1000 rows in set (0.00 sec)

mysql> SELECT * FROM information_schema.OPTIMIZER_TRACE\G
*************************** 1. row ***************************
QUERY: select * from t1 where a >900 and b > 910 order  by a    --SQL语句
TRACE: {
  "steps": [
    {
      "join_preparation": {    --SQL准备阶段
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `t1`.`id` AS `id`,`t1`.`a` AS `a`,`t1`.`b` AS `b`,`t1`.`create_time` AS `create_time`,`t1`.`update_time` AS `u
pdate_time` from `t1` where ((`t1`.`a` > 900) and (`t1`.`b` > 910)) order by `t1`.`a`"
          }
        ] /* steps */
      } /* join_preparation */
    },
    {
      "join_optimization": {   --SQL优化阶段
        "select#": 1,
        "steps": [
          {
            "condition_processing": {    --条件处理
              "condition": "WHERE",
              "original_condition": "((`t1`.`a` > 900) and (`t1`.`b` > 910))",        --原始条件
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "((`t1`.`a` > 900) and (`t1`.`b` > 910))"   --等值传递转换
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "((`t1`.`a` > 900) and (`t1`.`b` > 910))"       --常量传递转换
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "((`t1`.`a` > 900) and (`t1`.`b` > 910))"        --去除没有的条件后的结构
                }
              ] /* steps */
            } /* condition_processing */
          },
          {
            "substitute_generated_columns": {
            } /* substitute_generated_columns */   --替换虚拟生成列
          },
          {
            "table_dependencies": [  --表依赖详情
              {
                "table": "`t1`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ] /* depends_on_map_bits */
              }
            ] /* table_dependencies */



          },
          {
            "ref_optimizer_key_uses": [
            ] /* ref_optimizer_key_uses */
          },
          {
            "rows_estimation": [ --预估表的访问成本
              {
                "table": "`t1`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 1000,       --扫描行数
                    "cost": 207.1       --成本
                  } /* table_scan */,
                  "potential_range_indexes": [    --分析可能使用的索引
                    {
                      "index": "PRIMARY",
                      "usable": false,       --为false，说明主键索引不可用
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_a",      --可能使用索引idx_a
                      "usable": true,
                      "key_parts": [
                        "a",
                        "id"
                      ] /* key_parts */
                    },
                    {
                      "index": "idx_b",      --可能使用索引idx_b
                      "usable": true,
                      "key_parts": [
                        "b",
                        "id"
                      ] /* key_parts */
                    }
                  ] /* potential_range_indexes */,
                  "setup_range_conditions": [
                  ] /* setup_range_conditions */,
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  } /* group_index_range */,
                  "analyzing_range_alternatives": { --分析各索引的成本
                    "range_scan_alternatives": [
                      {
                        "index": "idx_a", --使用索引idx_a的成本
                        "ranges": [
                          "900 < a"   --使用索引idx_a的范围
                        ] /* ranges */,
                        "index_dives_for_eq_ranges": true, --是否使用index dive（详细描述请看下方的知识扩展）
                        "rowid_ordered": false, --使用该索引获取的记录是否按照主键排序
                        "using_mrr": false,   --是否使用mrr
                        "index_only": false,    --是否使用覆盖索引
                        "rows": 100,            --使用该索引获取的记录数
                        "cost": 121.01,         --使用该索引的成本
                        "chosen": true          --可能选择该索引
                      },
                      {
                        "index": "idx_b",       --使用索引idx_b的成本
                        "ranges": [
                          "910 < b"
                        ] /* ranges */,
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "rows": 90,
                        "cost": 109.01,



                        "chosen": true             --也可能选择该索引
                      }
                    ] /* range_scan_alternatives */,
                    "analyzing_roworder_intersect": { --分析使用索引合并的成本
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    } /* analyzing_roworder_intersect */
                  } /* analyzing_range_alternatives */,
                  "chosen_range_access_summary": {  --确认最优方法
                    "range_access_plan": {
                      "type": "range_scan",
                      "index": "idx_b",
                      "rows": 90,
                      "ranges": [
                        "910 < b"
                      ] /* ranges */
                    } /* range_access_plan */,
                    "rows_for_plan": 90,
                    "cost_for_plan": 109.01,
                    "chosen": true
                  } /* chosen_range_access_summary */
                } /* range_analysis */
              }
            ] /* rows_estimation */
          },
          {
            "considered_execution_plans": [  --考虑的执行计划
              {
                "plan_prefix": [
                ] /* plan_prefix */,
                "table": "`t1`",
                "best_access_path": {          --最优的访问路径
                  "considered_access_paths": [ --决定的访问路径
                    {
                      "rows_to_scan": 90,      --扫描的行数
                      "access_type": "range",  --访问类型：为range
                      "range_details": {
                        "used_index": "idx_b"  --使用的索引为：idx_b
                      } /* range_details */,
                      "resulting_rows": 90,    --结果行数
                      "cost": 127.01,          --成本
                      "chosen": true,     --确定选择
                      "use_tmp_table": true
                    }
                  ] /* considered_access_paths */
                } /* best_access_path */,
                "condition_filtering_pct": 100,
                "rows_for_plan": 90,
                "cost_for_plan": 127.01,
                "sort_cost": 90,
                "new_cost_for_plan": 217.01,
                "chosen": true
              }
            ] /* considered_execution_plans */
          },
          {
            "attaching_conditions_to_tables": {  --尝试添加一些其他的查询条件
              "original_condition": "((`t1`.`a` > 900) and (`t1`.`b` > 910))",
              "attached_conditions_computation": [
              ] /* attached_conditions_computation */,
              "attached_conditions_summary": [
                {
                  "table": "`t1`",
                  "attached": "((`t1`.`a` > 900) and (`t1`.`b` > 910))"
                }
              ] /* attached_conditions_summary */
            } /* attaching_conditions_to_tables */
          },
          {



            "clause_processing": {
              "clause": "ORDER BY",
              "original_clause": "`t1`.`a`",
              "items": [
                {
                  "item": "`t1`.`a`"
                }
              ] /* items */,
              "resulting_clause_is_simple": true,
              "resulting_clause": "`t1`.`a`"
            } /* clause_processing */
          },
          {
            "reconsidering_access_paths_for_index_ordering": {
              "clause": "ORDER BY",
              "index_order_summary": {
                "table": "`t1`",
                "index_provides_order": false,
                "order_direction": "undefined",
                "index": "idx_b",
                "plan_changed": false
              } /* index_order_summary */
            } /* reconsidering_access_paths_for_index_ordering */
          },
          {
            "refine_plan": [          --改进的执行计划
              {
                "table": "`t1`",
                "pushed_index_condition": "(`t1`.`b` > 910)",
                "table_condition_attached": "(`t1`.`a` > 900)"
              }
            ] /* refine_plan */
          }
        ] /* steps */
      } /* join_optimization */
    },
    {
      "join_execution": {             --SQL执行阶段
        "select#": 1,
        "steps": [
          {
            "filesort_information": [
              {
                "direction": "asc",
                "table": "`t1`",
                "field": "a"
              }
            ] /* filesort_information */,
            "filesort_priority_queue_optimization": {
              "usable": false,             --未使用优先队列优化排序
              "cause": "not applicable (no LIMIT)"     --未使用优先队列排序的原因是没有limit
            } /* filesort_priority_queue_optimization */,
            "filesort_execution": [
            ] /* filesort_execution */,
            "filesort_summary": {           --排序详情
              "rows": 90,
              "examined_rows": 90,          --参与排序的行数
              "number_of_tmp_files": 0,     --排序过程中使用的临时文件数
              "sort_buffer_size": 115056,
              "sort_mode": "<sort_key, additional_fields>"   --排序模式（详解请看下方知识扩展）
            } /* filesort_summary */
          }
        ] /* steps */
      } /* join_execution */
    }
  ] /* steps */
}
MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0 --该字段表示分析过程丢弃的文本字节大小，本例为0，说明没丢弃任何文本
          INSUFFICIENT_PRIVILEGES: 0    --查看trace的权限是否不足，0表示有权限查看trace详情



这里对上方的执行字段详细描述一下：

TRACE 字段中整个文本大致分为三个过程。

准备阶段：对应文本中的 join_preparation

优化阶段：对应文本中的 join_optimization

执行阶段：对应文本中的 join_execution

使用时，重点关注优化阶段和执行阶段。

由此例可以看出：

在 trace 结果的 analyzing_range_alternatives 这一项可以看到：使用索引 idx_a 的成本为 121.01，使用索引

idx_b 的成本为 109.01，显然使用索引 idx_b 的成本要低些，因此优化器选择了 idx_b 索引；

在 trace 结果的 filesort_summary 这一项可以看到：排序模式为<sort_key, additional_fields>，表示使用的是单

路排序，即一次性取出满足条件行的所有字段，然后在 sort buffer 中进行排序。

知识扩展：

知识点一：MySQL 常见排序模式：

< sort_key, rowid >双路排序（又叫回表排序模式）：是首先根据相应的条件取出相应的排序字段和可以直

接定位行数据的行 ID，然后在 sort buffer 中进行排序，排序完后需要再次取回其它需要的字段；

< sort_key, additional_fields >单路排序：是一次性取出满足条件行的所有字段，然后在sort buffer中进行排

序；

< sort_key, packed_additional_fields >打包数据排序模式：将 char 和 varchar 字段存到 sort buffer 中时，

更加紧缩。

三种排序模式比较：

第二种模式相对第一种模式，避免了二次回表，可以理解为用空间换时间。由于 sort buffer 有限，如果需要

查询的数据比较大的话，会增加磁盘排序时间，效率可能比第一种方式更低。

MySQL 提供了一个参数：max_length_for_sort_data，当“排序的键值对大小” > max_length_for_sort_data

时，MySQL 认为磁盘外部排序的 IO 效率不如回表的效率，会选择第一种排序模式；否则，会选择第二种模

式。

第三种模式主要解决变长字符数据存储空间浪费的问题。

知识点二：优化器在估计符合条件的行数时有两个选择：

index diver：dive 到 index 中利用索引完成元组数的估算；特点是速度慢，但可以得到精确的值；

1 row in set (0.00 sec)
------------------------------------------------
------------------------------------------------

mysql> set session optimizer_trace="enabled=off";
/* 及时关闭trace */
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04 条件字段有索引，为什么查询
也这么慢?

index statistics：使用索引的统计数值，进行估算；特点是速度快，但是值不一定准确。

3 总结

今天我们分享了 show profile 和 trace 的使用方法，我们来对比一下三种分析 SQL 方法的特点：

explain：获取 MySQL 中 SQL 语句的执行计划，比如语句是否使用了关联查询、是否使用了索引、扫描行数

等；

profile：可以清楚了解到SQL到底慢在哪个环节；

trace：查看优化器如何选择执行计划，获取每个可能的索引选择的代价。

三种方法各有其适用场景，如果你有其它分析 SQL 的工具，欢迎在留言区分享。

4 问题

在工作中，遇到慢查询你是如何去分析优化的？

5 参考资料

MySQL 5.7官方文档：

https://dev.mysql.com/doc/internals/en/tracing-example.html

}

https://dev.mysql.com/doc/internals/en/tracing-example.html
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