
更新时间：2019-08-08 09:52:34

07 换种思路写分页查询

很多时候，业务上会有分页操作的需求，对应的 SQL 类似下面这条：

表示从表 t1 中取出从 10001 行开始的 10 行记录。看似只查询了 10 条记录，实际这条 SQL 是先读取 10010 条记

录，然后抛弃前 10000 条记录，然后读到后面 10 条想要的数据。因此要查询一张大表比较靠后的数据，执行效率

是非常低的。本节内容就一起研究下，是否有办法去优化分页查询。

为了方便验证，首先创建测试表并写入数据：

你若要喜爱你自己的价值，你就得给世界创造价值。

——歌德

select a,b,c from t1 limit 10000,10;

file:///read/43/article/686
file:///read/43/article/688

本节会分享两种分页场景的优化技巧：

根据自增且连续主键排序的分页查询

查询根据非主键字段排序的分页查询

1 根据自增且连续主键排序的分页查询

首先来看一个根据自增且连续主键排序的分页查询的例子：

该 SQL 表示查询从第 99001开始的两行数据，没添加单独 order by，表示通过主键排序。我们再看表 t1，因为主

键是自增并且连续的，所以可以改写成按照主键去查询从第 99001开始的两行数据，如下：

use muke; /* 使用muke这个database */
drop table if exists t1; /* 如果表t1存在则删除表t1 */

CREATE TABLE `t1` (/* 创建表t1 */
 `id` int(11) NOT NULL auto_increment,
 `a` int(11) DEFAULT NULL,
 `b` int(11) DEFAULT NULL,
 `create_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '记录创建时间',
 `update_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '记录更新时间',
 PRIMARY KEY (`id`),
 KEY `idx_a` (`a`),
 KEY `idx_b` (`b`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

drop procedure if exists insert_t1; /* 如果存在存储过程insert_t1，则删除 */
delimiter ;;
create procedure insert_t1() /* 创建存储过程insert_t1 */
begin
 declare i int; /* 声明变量i */
 set i=1; /* 设置i的初始值为1 */
 while(i<=100000)do /* 对满足i<=100000的值进行while循环 */
 insert into t1(a,b) values(i, i); /* 写入表t1中a、b两个字段，值都为i当前的值 */
 set i=i+1; /* 将i加1 */
 end while;
end;;
delimiter ; /* 创建批量写入100000条数据到表t1的存储过程insert_t1 */
call insert_t1(); /* 运行存储过程insert_t1 */

select * from t1 limit 99000,2;

select * from t1 where id >99000 limit 2;

查询的结果是一致的。我们再对比一下执行计划：

原 SQL 中 key 字段为 NULL，表示未走索引，rows 显示 99965，表示扫描的行数 99965行；

改写后的 SQL key 字段为 PRIMARY，表示走了主键索引，扫描了1000行。

显然改写后的 SQL 执行效率更高。

但是，这条 SQL 在很多场景并不实用，因为表中可能某些记录被删后，主键空缺，导致结果不一致，如下图的实

验（整个实验过程为：先删除一条前面的记录，然后再测试原 SQL 和优化后的 SQL）：

可以发现两条 SQL 的结果并不一样，因此，如果主键不连续，不能使用上面描述的优化方法。

另外如果原 SQL 是 order by 非主键的字段，按照上面说的方法改写会导致两条 SQL 的结果不一致。所以这种改

写得满足以下两个条件：

主键自增且连续

结果是按照主键排序的

2 查询根据非主键字段排序的分页查询

再看一个根据非主键字段排序的分页查询，SQL 如下：

查询时间是 0.08 秒。

我们来看下这条 SQL 的执行计划：

发现并没有使用 a 字段的索引（key 字段对应的值为 null），具体原因可以复习第 4 节 2.2 小节：扫描整个索引并

查找到没索引的行的成本比扫描全表的成本更高，所以优化器放弃使用索引。

知道不走索引的原因，那么怎么优化呢？

其实关键是让排序时返回的字段尽可能少，所以可以让排序和分页操作先查出主键，然后根据主键查到对应的记

录，SQL 改写如下（这里参考了《深入浅出 MySQL》18.4.7 优化分页查询）：

需要的结果与原 SQL 一致，执行时间 0.02 秒，是原 SQL 执行时间的四分之一，我们再对比优化前后的执行计

划：

原 SQL 使用的是 filesort 排序，而优化后的 SQL 使用的是索引排序。

3 总结

本节讲到了两种分页查询场景的优化：

select * from t1 order by a limit 99000,2;

select * from t1 f inner join (select id from t1 order by a limit 99000,2)g on f.id = g.id;

 06 让order by、group by查询更快 08 Join语句可以这样优化

根据自增且连续主键排序的分页查询优化

查询根据非主键字段排序的分页查询优化

对于其它一些复杂的分页查询，也基本可以按照这两个思路去优化，尤其是第二种优化方式。第一种优化方式需要

主键连续，而主键连续对于一个正常业务表来说可能有点困难，总会有些数据行删除的，但是占用了一个主键 id。

4 问题

对于本节生成的测试表 t1，如果主键是自增的，但是中间有部分记录被删了，也就是主键不连续，下面这条 SQL

应该怎么优化？

你可以把你的优化结果写在留言区一起讨论。

5 参考资料

《MySQL 5.7 Reference Manual》8.2.1.17 LIMIT Query

Optimization：https://dev.mysql.com/doc/refman/5.7/en/limit-optimization.html

《深入浅出 MySQL》（第 2 版）：18.4.7 优化分页查询

《高性能 MySQL》 （第 3 版）：6.7.5 优化 LIMIT 分页

}

select * from t1 limit 99000,2;

https://dev.mysql.com/doc/refman/5.7/en/limit-optimization.html

	1 根据自增且连续主键排序的分页查询
	2 查询根据非主键字段排序的分页查询
	3 总结
	4 问题
	5 参考资料

