
更新时间：2019-08-13 14:08:27

08 Join语句可以这样优化

我们在使用数据库查询数据时，有时一张表并不能满足我们的需求，很多时候都涉及到多张表的连接查询。今天，

我们就一起研究关联查询的一些优化技巧。在说关联查询优化之前，我们先看下跟关联查询有关的几个算法：

为了方便理解，首先创建测试表并写入测试数据，语句如下：

世上无难事,只要肯登攀。
——毛泽东

file:///read/43/article/687
file:///read/43/article/689

1 关联查询的算法

MySQL 使用以下两种嵌套循环算法或它们的变体在表之间执行连接（参考 《MySQL 5.7 Reference

Manual》8.2.1.6 Nested-Loop Join Algorithms）：

Nested-Loop Join 算法

Block Nested-Loop Join 算法

另外还有一种算法 Batched Key Access，其实算对 Nested-Loop Join 算法的一种优化。

下面我们就看下这些算法的设计思想：

1.1 Nested-Loop Join 算法

一个简单的 Nested-Loop Join(NLJ) 算法一次一行循环地从第一张表（称为驱动表）中读取行，在这行数据中取到

关联字段，根据关联字段在另一张表（被驱动表）里取出满足条件的行，然后取出两张表的结果合集。

我们试想一下，如果在被驱动表中这个关联字段没有索引，那么每次取出驱动表的关联字段在被驱动表查找对应的

数据时，都会对被驱动表做一次全表扫描，成本是非常高的（比如驱动表数据量是 m，被驱动表数据量是 n，则扫

描行数为 m * n ）。

好在 MySQL 在关联字段有索引时，才会使用 NLJ，如果没索引，就会使用 Block Nested-Loop Join，等下会细说

这个算法。我们先来看下在有索引情况的情况下，使用 Nested-Loop Join 的场景（称为：Index Nested-Loop

Join）。

CREATE DATABASE muke; /* 创建测试使用的database，名为muke */
use muke; /* 使用muke这个database */
drop table if exists t1; /* 如果表t1存在则删除表t1 */
CREATE TABLE `t1` (/* 创建表t1 */
`id` int(11) NOT NULL auto_increment,
`a` int(11) DEFAULT NULL,
`b` int(11) DEFAULT NULL,
`create_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '记录创建时间',
`update_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
COMMENT '记录更新时间',
PRIMARY KEY (`id`),
KEY `idx_a` (`a`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

drop procedure if exists insert_t1; /* 如果存在存储过程insert_t1，则删除 */

delimiter ;;
create procedure insert_t1() /* 创建存储过程insert_t1 */
begin
declare i int; /* 声明变量i */
set i=1; /* 设置i的初始值为1 */
while(i<=10000)do /* 对满足i<=10000的值进行while循环 */
insert into t1(a,b) values(i, i); /* 写入表t1中a、b两个字段，值都为i当前的值 */
set i=i+1; /* 将i加1 */
end while;
end;;
delimiter ; /* 创建批量写入10000条数据到表t1的存储过程insert_t1 */
call insert_t1(); /* 运行存储过程insert_t1 */
drop table if exists t2; /* 如果表t2存在则删除表t2 */
create table t2 like t1; /* 创建表t2，表结构与t1一致 */
insert into t2 select * from t1 limit 100; /* 将表t1的前100行数据导入到t2 */

https://dev.mysql.com/doc/refman/5.7/en/nested-loop-joins.html

因为 MySQL 在关联字段有索引时，才会使用 NLJ，因此本节后面的内容所用到的 NLJ 都表示 Index Nested-Loop

Join。

如下例：

Tips：表 t1 和表 t2 中的 a 字段都有索引。

怎么确定这条 SQL 使用的是 NLJ 算法？

我们先来看下 sql1 的执行计划：

从执行计划中可以看到这些信息：

驱动表是 t2，被驱动表是 t1。原因是：explain 分析 join 语句时，在第一行的就是驱动表；选择 t2 做驱动表的原

因：如果没固定连接方式（比如没加 straight_join）优化器会优先选择小表做驱动表。所以使用 inner join 时，

前面的表并不一定就是驱动表。

使用了 NLJ。原因是：一般 join 语句中，如果执行计划 Extra 中未出现 Using join buffer （***）；则表示使用的

join 算法是 NLJ。

sql1 的大致流程如下：

1. 从表 t2 中读取一行数据；

2. 从第 1 步的数据中，取出关联字段 a，到表 t1 中查找；

3. 取出表 t1 中满足条件的行，跟 t2 中获取到的结果合并，作为结果返回给客户端；

4. 重复上面 3 步。

在这个过程中会读取 t2 表的所有数据，因此这里扫描了 100 行，然后遍历这 100 行数据中字段 a 的值，根据 t2

表中 a 的值索引扫描 t1 表中的对应行，这里也扫描了 100 行。因此整个过程扫描了 200 行。

在前面，我们有说到：如果被驱动表的关联字段没索引，就会使用 Block Nested-Loop Join(简称：BNL)，为什么会

选择使用 BNL 算法而不继续使用 Nested-Loop Join呢？下面就一起分析下：

1.2 Block Nested-Loop Join 算法

Block Nested-Loop Join(BNL) 算法的思想是：把驱动表的数据读入到 join_buffer 中，然后扫描被驱动表，把被驱

动表每一行取出来跟 join_buffer 中的数据做对比，如果满足 join 条件，则返回结果给客户端。

我们一起看看下面这条 SQL 语句：

select * from t1 inner join t2 on t1.a = t2.a; /* sql1 */

select * from t1 inner join t2 on t1.b = t2.b; /* sql2 */

Tips：表 t1 和表 t2 中的 b 字段都没有索引

看下执行计划：

在 Extra 发现 Using join buffer (Block Nested Loop)，这个就说明该关联查询使用的是 BNL 算法。

我们再看下 sql2 的执行流程：

1. 把 t2 的所有数据放入到 join_buffer 中

2. 把表 t1 中每一行取出来，跟 join_buffer 中的数据做对比

3. 返回满足 join 条件的数据

在这个过程中，对表 t1 和 t2 都做了一次全表扫描，因此扫描的总行数为10000(表 t1 的数据总量) + 100(表 t2 的

数据总量) = 10100。并且 join_buffer 里的数据是无序的，因此对表 t1 中的每一行，都要做 100 次判断，所以内存

中的判断次数是 100 * 10000= 100 万次。

下面我们来回答上面提出的一个问题：

如果被驱动表的关联字段没索引，为什么会选择使用 BNL 算法而不继续使用 Nested-Loop Join 呢？

在被驱动表的关联字段没索引的情况下，比如 sql2：

如果使用 Nested-Loop Join，那么扫描行数为 100 * 10000 = 100万次，这个是磁盘扫描。

如果使用 BNL，那么磁盘扫描是 100 + 10000=10100 次，在内存中判断 100 * 10000 = 100万次。

显然后者磁盘扫描的次数少很多，因此是更优的选择。因此对于 MySQL 的关联查询，如果被驱动表的关联字段没

索引，会使用 BNL 算法。

1.3 Batched Key Access 算法

在学了 NLJ 和 BNL 算法后，你是否有个疑问，如果把 NLJ 与 BNL 两种算法的一些优秀的思想结合，是否可行

呢？

比如 NLJ 的关键思想是：被驱动表的关联字段有索引。

而 BNL 的关键思想是：把驱动表的数据批量提交一部分放到 join_buffer 中。

从 MySQL 5.6 开始，确实出现了这种集 NLJ 和 BNL 两种算法优点于一体的新算法：Batched Key Access(BKA)。

其原理是：

1. 将驱动表中相关列放入 join_buffer 中

2. 批量将关联字段的值发送到 Multi-Range Read(MRR) 接口

3. MRR 通过接收到的值，根据其对应的主键 ID 进行排序，然后再进行数据的读取和操作

4. 返回结果给客户端

https://dev.mysql.com/doc/refman/5.7/en/bnl-bka-optimization.html

这里补充下 MRR 相关知识：

当表很大并且没有存储在缓存中时，使用辅助索引上的范围扫描读取行可能导致对表有很多随机访问。

而 Multi-Range Read 优化的设计思路是：查询辅助索引时，对查询结果先按照主键进行排序，并按照主键排

序后的顺序，进行顺序查找，从而减少随机访问磁盘的次数。

使用 MRR 时，explain 输出的 Extra 列显示的是 Using MRR。

optimizer_switch 中 mrr_cost_based 参数的值会影响 MRR。

如果 mrr_cost_based=on，表示优化器尝试在使用和不使用 MRR 之间进行基于成本的选择。

如果 mrr_cost_based=off，表示一直使用 MRR。

更多 MRR 信息请参考官方手册：https://dev.mysql.com/doc/refman/5.7/en/mrr-optimization.html。

下面尝试开启 BKA ：

这里对上面几个参数做下解释：

mrr=on 开启 mrr

mrr_cost_based=off 不需要优化器基于成本考虑使用还是不使用 MRR，也就是一直使用 MRR

batched_key_access=on 开启 BKA

然后再看 sql1 的执行计划：

在 Extra 字段中发现有 Using join buffer (Batched Key Access)，表示确实变成了 BKA 算法。

2 优化关联查询

通过上面的知识点，我们知道了关联查询的一些算法，下面一起来讨论下关联查询的优化：

2.1 关联字段添加索引

通过上面的内容，我们知道了 BNL、NLJ 和 BKA 的原理，因此让 BNL变成 NLJ 或者 BKA，可以提高 join 的效

率。我们来看下面的例子

我们构造出两个算法对于的例子：

Block Nested-Loop Join 的例子：

set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';

explain select * from t1 inner join t2 on t1.a = t2.a;

https://dev.mysql.com/doc/refman/5.7/en/mrr-optimization.html

需要 0.08 秒。

Index Nested-Loop Join 的例子：

只需要 0.01 秒。

再对比一下两条 SQL 的执行计划：

前者扫描的行数是 100 和 9963。

后者扫描的行数是 100 和 1。

对比执行时间和执行计划，再结合在本节开始讲解的两种算法的执行流程，很明显 Index Nested-Loop Join 效率更

高。

Tips:因为在写入数据时使用的是 insert into t1(a,b) values(i, i); 因此 a、b 两个字段的值是相等的，因此这个实

验的两条 SQL 虽然使用的是不同关联字段，但是实际相当于同一个字段添加索引前后的状态。

因此建议在被驱动表的关联字段上添加索引，让 BNL变成 NLJ 或者 BKA ，可明显优化关联查询。

2.2 小表做驱动表

前面说到，Index Nested-Loop Join 算法会读取驱动表的所有数据，首先扫描的行数是驱动表的总行数（假设为

n），然后遍历这 n 行数据中关联字段的值，根据驱动表中关联字段的值索引扫描被驱动表中的对应行，这里又会

扫描 n 行，因此整个过程扫描了 2n 行。当使用 Index Nested-Loop Join 算法时，扫描行数跟驱动表的数据量成正

比。所以在写 SQL 时，如果确定被关联字段有索引的情况下，建议用小表做驱动表。

我们来看下以 t2 为驱动表的 SQL：

这里使用 straight_join 可以固定连接方式，让前面的表为驱动表。

再看下以 t1 为驱动表的 SQL：

select * from t1 join t2 on t1.b= t2.b;

select * from t1 join t2 on t1.a= t2.a;

select * from t2 straight_join t1 on t2.a = t1.a;

select * from t1 straight_join t2 on t1.a = t2.a;

我们对比下两条 SQL 的执行计划：

明显前者扫描的行数少（注意关注 explain 结果的 rows 列），所以建议小表驱动大表。

2.3 临时表

多数情况我们可以通过在被驱动表的关联字段上加索引来让 join 使用 NLJ 或者 BKA，但有时因为某条关联查询只

是临时查一次，如果再去添加索引可能会浪费资源，那么有什么办法优化呢？

这里提供一种创建临时表的方法。

我们一起测试下：

比如下面这条关联查询：

我们看下执行计划：

由于表 t1 和表 t2 的字段 b都没索引，因此使用的是效率比较低的 BNL 算法。

现在用临时表的方法对这条 SQL 进行优化：

首先创建临时表 t1_tmp，表结构与表 t1 一致，只是在关联字段 b 上添加了索引。

把 t1 表中的数据写入临时表 t1_tmp 中：

执行 join 语句：

select * from t1 join t2 on t1.b= t2.b;

CREATE TEMPORARY TABLE `t1_tmp` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `a` int(11) DEFAULT NULL,
 `b` int(11) DEFAULT NULL,
 `create_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '记录创建时间',
 `update_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '记录更新时间',
 PRIMARY KEY (`id`),
 KEY `idx_a` (`a`),
 KEY `idx_b` (b)
) ENGINE=InnoDB ;

insert into t1_tmp select * from t1;

 07 换种思路写分页查询 09 为何count(*)这么慢?

我们再看下执行计划：

Extra 没出现 “Block Nested Loop”，说明使用的是 Index Nested-Loop Join，并且扫描行数也大大降低了。

所以当遇到 BNL 的 join 语句，如果不方便在关联字段上添加索引，不妨尝试创建临时表，然后在临时表中的

关联字段上添加索引，然后通过临时表来做关联查询。

3 总结

本节首先讲到了 NLJ 、BNL、和 BKA 这几种 join 算法的原理，然后通过认识这些算法，从而引申出 join 语句的一

些优化技巧，比如关联字段添加索引、小表做驱动表和创建临时表等方法。

4 问题

哪种情况下，小表做驱动表跟大表做驱动表的执行效率是一样的？

5 参考资料

《MySQL 5.7 Reference Manual》

​ 8.2.1.6 Nested-Loop Join Algorithms:https://dev.mysql.com/doc/refman/5.7/en/nested-loop-joins.html

​ 8.2.1.10 Multi-Range Read Optimization:https://dev.mysql.com/doc/refman/5.7/en/mrr-optimization.html

 8.2.1.11 Block Nested-Loop and Batched Key Access Joins:https://dev.mysql.com/doc/refman/5.7/en/bnl-bka-

optimization.html

}

select * from t1_tmp join t2 on t1_tmp.b= t2.b;

https://dev.mysql.com/doc/refman/5.7/en/nested-loop-joins.html
https://dev.mysql.com/doc/refman/5.7/en/mrr-optimization.html
https://dev.mysql.com/doc/refman/5.7/en/bnl-bka-optimization.html

	1 关联查询的算法
	1.1 Nested-Loop Join 算法
	1.2 Block Nested-Loop Join 算法
	1.3 Batched Key Access 算法

	2 优化关联查询
	2.1 关联字段添加索引
	2.2 小表做驱动表
	2.3 临时表

	3 总结
	4 问题
	5 参考资料

