
更新时间：2019-09-03 10:33:11

15 全局锁和表锁什么场景会用到

从这一节开始，我们进入专栏的第三个 MySQL 知识大类：MySQL 锁。

在上一章（MySQL 索引）中，我们介绍了索引原理、需要添加索引的场景、一些常见索引类型的区别等，以及分

享了有些场景 MySQL 会选错索引及选错索引时的处理方式等。通过这些学习，我们知道了提高查询效率的方法。

但是，数据库往往是多个用户或者客户端在连接使用的。这时，我们需要考虑一个新的问题：如何保证数据并发

访问的一致性、有效性呢？

MySQL 中，锁就是协调多个用户或者客户端并发访问某一资源的机制，保证数据并发访问时的一致性和有效性。

本章就来介绍一下不同场景下的锁机制。

根据加锁的范围，MySQL 中的锁可分为三类：

全局锁

表级锁

行锁

本节来重点讲解一下全局锁和表锁。

1 全局锁

MySQL 全局锁会关闭所有打开的表，并使用全局读锁锁定所有表。其命令为：

既然我已经踏上这条道路，那么，任何东西都不应妨碍我沿着这条路走下去。

——康德

file:///read/43/article/694
javascript:;

简称：FTWRL，可以使用下面命令解锁：

我们来通过实验理解一下全局锁：

首先创建测试表，并写入数据：

进行 FTWRL 实验：

session1 session2

FLUSH TABLES WITH READ LOCK;
Query OK, 0 rows affected (0.00 sec)

select * from t14 limit 1;
…
1 row in set (0.00 sec)
（能正常返回结果）

select * from t14 limit 1;
…
1 row in set (0.00 sec)
（能正常返回结果）

insert into t14(a,b) values(2,2);
ERROR 1223 (HY000): Can’t execute
the query because you have a
conflicting read lock
（报错）

insert into t14(a,b) values(2,2);/* sql1 */
（等待）

UNLOCK TABLES;
insert into t14(a,b) values(2,2);/* sql1 */
Query OK, 1 row affected (5.73 sec)
（session1 解锁后，在等待的 sql1 马上执行成功）

上面的实验中，当 session1 执行 FTWRL 后，本线程 session1 和其它线程 session2 都可以查询，本线程和其它

线程都不能更新。

原因是：当执行 FTWRL 后，所有的表都变成只读状态，数据更新或者字段更新将会被阻塞。

那么全局锁一般什么时候会用到呢？

全局锁一般用在整个库（包含非事务引擎表）做备份（mysqldump 或者 xtrabackup）时。也就是说，在整个备份

过程中，整个库都是只读的，其实这样风险挺大的。如果是在主库备份，会导致业务不能修改数据；而如果是在从

库备份，就会导致主从延迟。

好在 mysqldump 包含一个参数 --single-transaction，可以在一个事务中创建一致性快照，然后进行所有表的备份。

因此增加这个参数的情况下，备份期间可以进行数据修改。但是需要所有表都是事务引擎表。所以这也是建议使用

InnoDB 存储引擎的原因之一。

而对于 xtrabackup，可以分开备份 InnoDB 和 MyISAM，或者不执行 --master-data，可以避免使用全局锁。

2 表级锁

FLUSH TABLES WITH READ LOCK;

UNLOCK TABLES;

use muke;
drop table if exists t14;
CREATE TABLE `t14` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `a` int(11) NOT NULL,
 `b` int(11) NOT NULL,
 PRIMARY KEY (`id`),
 KEY `idx_a` (`a`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
insert into t14(a,b) values(1,1);

表级锁有两种：表锁和元数据锁。

2.1 表锁

表锁使用场景：

1. 事务需要更新某张大表的大部分或全部数据。如果使用默认的行锁，不仅事务执行效率低，而且可能造成其它事

务长时间锁等待和锁冲突，这种情况下可以考虑使用表锁来提高事务执行速度；

2. 事务涉及多个表，比较复杂，可能会引起死锁，导致大量事务回滚，可以考虑表锁避免死锁。

其中表锁又分为表读锁和表写锁，命令分别是：

表读锁：

表写锁：

下面我们分别用实验验证表读锁和表写锁。

表读锁实验：

session1 session2

lock tables t14 read;
Query OK, 0 rows affected (0.00 sec)

select id,a,b from t14 limit 1;
…
1 row in set (0.00 sec)
（能正常返回结果）

select id,a,b from t14 limit 1;
…
1 row in set (0.00 sec)
（能正常返回结果）

insert into t14(a,b) values(3,3);
ERROR 1099 (HY000): Table ‘t14’ was locked
with a READ lock and can’t be updated
（报错）

insert into t14(a,b) values(3,3);/* sql2 */
（等待）

unlock tables;
Query OK, 0 rows affected (0.00 sec)

insert into t14(a,b) values(3,3);/* sql2 */
Query OK, 1 row affected (10.97 sec)
（session1 解锁后，sql2 立马写入成功）

从上面的实验我们可以看出，在 session1 中对表 t14 加表读锁，session1 和 session2 都可以查询表 t14 的数据；

而 session1 执行更新会报错，session2 执行更新会等待（直到 session1 解锁后才更新成功）。

总结：对表执行 lock tables xxx read （表读锁）时，本线程和其它线程可以读，本线程写会报错，其它线程

写会等待。

我们再来看一下表写锁实验：

session1 session2

lock tables t14 write;
Query OK, 0 rows affected (0.00 sec)

select id,a,b from t14 limit 1;
…
1 row in set (0.00 sec)
（能正常返回结果）

select id,a,b from t14 limit 1;/* sql3 */
（等待）

lock tables t14 read;

lock tables t14 write;

unlock tables;
Query OK, 0 rows affected (0.01 sec)

select id,a,b from t14 limit 1;/* sql3 */
…
1 row in set (7.16 sec)
（session1 解锁后，sql3 马上返回查询结果）

lock tables t14 write;
Query OK, 0 rows affected (0.00 sec)

delete from t14 limit 1;
Query OK, 1 row affected, 1 warning (0.00 sec)
（能正常执行删除语句）

delete from t14 limit 1;/* sql4 */
（等待）

unlock tables;
Query OK, 0 rows affected (0.00 sec)

delete from t14 limit 1;/* sql4 */
Query OK, 1 row affected, 1 warning (14.94 sec)
（session1 解锁后，sql4 立马执行成功）

session1 session2

总结：对表执行 lock tables xxx write （表写锁）时，本线程可以读写，其它线程读写都会阻塞。

2.2 元数据锁

在 MySQL 中，DDL 是不属于事务范畴的。如果事务和 DDL 并行执行同一张表时，可能会出现事务特性被破坏、

binlog 顺序错乱等 bug（比如 bug#989）。为了解决这类问题，从 MySQL 5.5.3 开始，引入了元数据锁

（Metadata Locking，简称：MDL 锁）（这段内容参考《淘宝数据库内核月报》MySQL · 特性分析 · MDL 实现分

析）。

从上面我们知道，MDL 锁的出现解决了同一张表上事务和 DDL 并行执行时可能导致数据不一致的问题。

但是，我们在工作中，很多情况需要考虑 MDL 的存在，否则可能导致长时间锁等待甚至连接被打满的情况。如下

例：

session1 session2 session3

select id,a,b,sleep(100) from t14 limit
1;/* sql5 */

alter table t14 add column c int;/* sql6 */
（等待）

select id,a,b from t14 limit 1;/* sql7 */
（等待）

select id,a,b,sleep(100) from t14 limit
1;/* sql5 */
…
1 row in set (1 min 40.00 sec)
（100秒后 sql5 返回结果）

alter table t14 add column c int;/* sql6 */
Query OK, 0 rows affected (1 min 33.98 sec)
Records: 0 Duplicates: 0 Warnings: 0
（session1 的查询语句执行完成后，sql6 立
马执行完毕）

select id,a,b from t14 limit 1;/* sql7 */
…
1 row in set (1 min 26.65 sec)
（session1 的查询语句执行完成后，sql7 立
马执行完毕）

上面的实验中，我们在 session1 查询了表 t14 的数据，其中使用了 sleep(100) ，表示在 100 秒后才会返回结果；

然后在 session2 执行 DDL 操作时会等待（原因是 session1 执行期间会对表 t14 加一个 MDL，而 session2 又会跟

session1 争抢 MDL）；而 session3 执行查询时也会继续等待。因此如果 session1 的语句一直没结束，其它所有

的查询都会等待。这种情况下，如果这张表查询比较频繁，很可能短时间把数据库的连接数打满，导致新的连接无

法建立而报错，如果是正式业务，影响是非常恐怖的。

当然如果出现这种情况，假如你还有 session 连着数据库，可以 kill 掉 session1 中的语句或者终止 session2 中的

DDL 操作，可以让业务恢复。但是出现这种情况的根源其实是：session1 中有长时间未提交的事务。因此对于开

发来说，在工作中应该尽量避免慢查询、尽量保证事务及时提交、避免大事务等，当然对于 DBA 来说，也应

该尽量避免在业务高峰执行 DDL 操作。

3 总结

本节讲解了全局锁和表锁。

其中全局锁会让所有的表变成只读状态，所有更新操作都会被阻塞。

https://bugs.mysql.com/bug.php?id=989
http://mysql.taobao.org/monthly/2015/11/04/

 14 为什么MySQL会选错索引？ 
16 行锁：InnoDB替代MyISAM的

重要原因

而表级锁分为表锁和元数据锁。

表锁又提到了表读锁和表写锁，并都进行了实验。两者的区别是：

表读锁：本线程和其它线程可以读，本线程写会报错，其它线程写会等待。

表写锁：本线程可以读写，其它线程读写都会阻塞。

为了保证事务和 DDl 并行执行数据一致，在 MySQL 5.5.3 引入了 MDL 锁。通过本节讲解的 MDL 锁机制，应该注

意的几个点是：

尽量避免慢查询

事务要及时提交

避免大事务

避免在业务高峰执行 DDL 操作

4 问题

一张几百行数据的小表，在业务高峰执行 DDL， 是不是不会出现因为 MDL 而导致连接被打满的情况？

5 参考资料

《深入浅出 MySQL》第二版：20.3.8 什么时候使用表锁

《MySQL 5.7 参考手册》：13.7.6.3 FLUSH Syntax

《淘宝数据库内核月报》：MySQL · 特性分析 · MDL 实现分析

}

https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables-with-read-lock
http://mysql.taobao.org/monthly/2015/11/04/

	1 全局锁
	2 表级锁
	2.1 表锁
	2.2 元数据锁

	3 总结
	4 问题
	5 参考资料

