
更新时间：2019-09-17 09:51:50

19 数据库忽然断电会丢数据吗？

在上一章，我讲解了 MySQL 锁的相关内容。主要谈到了全局锁、表锁、行锁以及死锁等。通过这些学习，相信我

们可以理解锁的原理，并在工作中降低锁冲突的概率。这也是优化数据库必须掌握的知识点。

从本节开始，将进入一个新的 MySQL 知识大类：MySQL 事务。

1 什么是事务？

根据《高性能 MySQL》第 3 版 1.3 事务一节中定义：

事务就是一组原子性的 SQL 查询，或者说一个独立的工作单元。如果数据库引擎能够成功地对数据库应用该

组查询的全部语句，那么就执行该组查询。如果其中有任何一条语句因为崩溃或其他原因无法执行，那么所有

的语句都不会执行。也就是说，事务内的语句，要么全部执行成功，要么全部执行失败。

看上面的文字可以稍微抽象了一点，可以结合生活中的一个例子：

比如你给朋友转账 100 元，其大致过程是：从你的账户扣除 100 元，然后再到你朋友的账户中增加 100 元，试

想，如果在这中间，因为网络问题或者程序问题，导致在你的账户中扣除了，但是没有在你朋友的账户中增加，那

岂不是乱套了。

所以，类似这种情况，就可以把这两个步骤放到一个事务里面。要么全部成功，也就是从你的账户扣除之后，然后

在你朋友账户中新增；要么全部失败，比如在中间出现问题，会回滚这中间所有的变更。大致操作步骤如下表：

步骤 对应的语句

读书给人以快乐、给人以光彩、给人以才干。

——培根

file:///read/43/article/698
file:///read/43/article/700


开始一个事务 begin;

从你的账户扣除 100 元 update money_info set balance = balance - 100 where user_id=1;

在你朋友的账户中增加 100 元 update money_info set balance = balance + 100 where user_id=2;

事务结束 commit;

步骤 对应的语句

一个良好的事务处理系统，必须具备 ACID 特性：

​ atomicity（原子性） ：要么全执行，要么全都不执行；

​ consistency（一致性）：在事务开始和完成时，数据都必须保持一致状态；

​ isolation（隔离性） ：事务处理过程中的中间状态对外部是不可见的；

​ durability（持久性） ：事务完成之后，它对于数据的修改是永久性的。

InnoDB 采用 redo log 机制来保证事务更新的一致性和持久性。什么是 redo log？下面来一起看下：

2 Redo log

Redo log 称为重做日志，用于记录事务操作变化，记录的是数据被修改之后的值。

Redo log 由两部分组成：

内存中的重做日志缓冲（redo log buffer）

重做日志文件（redo log file）

每次数据更新会先更新 redo log buffer，然后根据 innodb_flush_log_at_trx_commit 来控制 redo log buffer 更新到

redo log file 的时机。innodb_flush_log_at_trx_commit 有三个值可选：

0：事务提交时，在事务提交时，每秒触发一次 redo log buffer 写磁盘操作，并调用操作系统 fsync 刷新 IO 缓存。

1：事务提交时，InnoDB 立即将缓存中的 redo 日志写到日志文件中，并调用操作系统 fsync 刷新 IO 缓存；

2：事务提交时，InnoDB 立即将缓存中的 redo 日志写到日志文件中，但不是马上调用 fsync 刷新 IO 缓存，而是每

秒只做一次磁盘 IO 缓存刷新操作。

innodb_flush_log_at_trx_commit 参数的默认值是 1，也就是每个事务提交的时候都会从 log buffer 写更新记录到日

志文件，而且会刷新磁盘缓存，这完全满足事务持久化的要求，是最安全的，但是这样会有比较大的性能损失。

将参数设置为 0 时，如果数据库崩溃，最后 1秒钟的 redo log 可能会由于未及时写入磁盘文件而丢失，这种方式尽

管效率最高，但是最不安全。

将参数设置为 2 时，如果数据库崩溃，由于已经执行了重做日志写入磁盘的操作，只是没有做磁盘 IO 刷新操作，

因此，只要不发生操作系统奔溃，数据就不会丢失，这种方式是对性能和安全的一种折中处理。

3 Binlog

二进制日志（binlog）记录了所有的 DDL（数据定义语句）和 DML（数据操纵语句），但是不包括 select 和 show

这类操作。Binlog 有以下几个作用：

恢复：数据恢复时可以使用二进制日志

复制：通过传输二进制日志到从库，然后进行恢复，以实现主从同步

审计：可以通过二进制日志进行审计数据的变更操作

可以通过参数 sync_binlog 来控制累积多少个事务后才将二进制日志 fsync 到磁盘。



 18 为什么会出现死锁？ 20 MVCC怎么实现的?

sync_binlog=0，表示每次提交事务都只write，不fsync

sync_binlog=1，表示每次提交事务都会执行fsync

sync_binlog=N(N>1)，表示每次提交事务都write，累积N个事务后才fsync

比如要加快写入数据的速度或者机器磁盘 IO 瓶颈时，可以将 sync_binlog 设置成大于 1 的值，但是如果设置为

N(N>1)时，如果数据库崩溃，可能会丢失最近 N 个事务的 binlog。

4 怎样确保数据库突然断电不丢数据？

通过上面的讲解，只要 innodb_flush_log_at_trx_commit 和 sync_binlog 都为 1（通常称为：双一），就能确保

MySQL 机器断电重启后，数据不丢失。

因此建议在比较重要的库，比如涉及到钱的库，设置为双一，而你的测试环境或者正式业务不那么重要的库（比如

日志库）可以将 innodb_flush_log_at_trx_commit 设置为0，sync_binlog 设置成大于100 的数值，提高更新效率。

5 总结

本节讲解了什么是事务？

所谓事务：是指一组原子性的 SQL 查询，事务里的 SQL 要么全部执行成功，要么全部执行失败。

一个良好的事务处理系统，必须具备 ACID 特性： atomicity（原子性）、consistency（一致性）、 isolation（隔离

性）、 durability（持久性）。

另外讲解了 Redo log 和 Binlog：

Redo log：称为重做日志，用于记录事务操作变化，记录的是数据被修改之后的值

Binlog：记录了所有变更操作，其作用有：恢复、复制、审计等

如果想要数据库达到最安全的状态，可以将 innodb_flush_log_at_trx_commit 和 sync_binlog 都设置为 1。

6 问题

你工作中有遇到过丢数据的场景吗？是什么原因导致的呢？

7 参考资料

《高性能 MySQL》第 3 版：1.3 事务

《MySQL 技术内幕》第 2 版：7.2 事务的实现

}


	1 什么是事务？
	2 Redo log
	3 Binlog
	4 怎样确保数据库突然断电不丢数据？
	5 总结
	6 问题
	7 参考资料

