
更新时间：2020-03-11 09:45:06

05 很有用的条件判断函数与系统函数

高级语言中对于条件判断我们可以使用类似 if…else、switch…case 等语句，它们非常方便实用。为了避免手动多

次转换与条件匹配，MySQL 同样提供了功能强大的条件函数。MySQL 中的系统信息包含：数据库的版本号、当前

登录用户、当前连接数、系统字符集等等。这些信息在特定的环境中非常有用，例如：查看连接数定位 MySQL 是

否过载、查看字符集定位乱码原因等等。这一节里，我们就来看一看 MySQL 中有哪些条件判断和系统函数，以及

它们的使用方法。

1 常用的条件判断函数

我们可以把常用的条件判断函数分为两类：IF 和 CASE。其中，IF 又包含 IF、IFNULL 和 NULLIF，它们都是单一

的条件比对。如果想要实现多条件比对，则需要使用 CASE 语句。在讲解这两类函数之前，我们假定数据表

worker 中存储了如下的数据。

人生太短，要干的事太多，我要争分夺秒。——爱迪生

file:///read/71/article/1638
file:///read/71/article/1645

如果不做特别说明，接下来的查询示例中都会使用到 worker 表及其当前存储的数据。

1.1 IF 条件判断函数

首先，我们来看一看 IF (expr, v1, v2) 函数。expr 是表达式的意思，它的含义是：如果 expr 为真（expr<>0 and

expr<>NULL），则 IF 函数的返回值是 v1，否则，返回 v2。IF 函数的返回值是数字还是字符串，则视其所在语境

而定。

如果你没有用过 IF，可能通过我的解释还是不能很好的理解，那么，看个例子吧。worker 表中有一列 type，用于

标识员工的工作岗位（暂且不用关心具体指代什么），如果我想区分出来，且给出对应的标识，可以这样做。

从结果中可以得出结论，SQL 中的 IF 函数与高级语言中的 if…else 功能相同。另外，可以注意到，不知道什么原

因，部分员工的 salary 是 NULL，这是没有意义的。如果把 NULL 显示为 0 是不是更好一些呢 ？此时，IFNULL

(v1, v2) 函数可以解决这个问题。

IFNULL (v1, v2) 表达的语义是：如果 v1 不为 NULL，则返回 v1，否则，返回 v2。同样，IFNULL 函数的返回值是

数字还是字符串，则视其所在语境而定。我们可以利用 IFNULL 将 salary 是 NULL 的列值变成 0。

与 IFNULL 的名称很相似的一个函数是 NULLIF (v1, v2)，它表达的语义是：如果 v1 等于 v2，那么返回值是

NULL，否则返回值为 v1。下面，我们来看一个 “没有太多意义” 的例子。

mysql> SELECT id, type, name, salary FROM worker;
+----+------+--------+--------+
| id | type | name | salary |
+----+------+--------+--------+
1	A	tom	1800
2	B	jack	2100
3	C	pony	NULL
4	B	tony	3600
5	B	marry	1900
6	C	tack	1200
7	A	tick	NULL
8	B	clock	2000
9	C	noah	1500
10	C	jarvis	1800
+----+------+--------+--------+

mysql> SELECT name, IF(type='A', '研发', '非研发') AS type FROM worker WHERE id IN (1, 2);
+------+-----------+
| name | type |
+------+-----------+
| tom | 研发 |
| jack | 非研发 |
+------+-----------+

mysql> SELECT name, IFNULL(salary, 0) AS salary FROM worker WHERE id IN (1, 2, 3);
+------+--------+
| name | salary |
+------+--------+
tom	1800
jack	2100
pony	0
+------+--------+

可以看到，id 为 1 和 2 的记录，salary 不为 NULL，直接返回了 salary。而 id 为 3 的记录，salary 等于 NULL，返

回了 NULL。

1.2 CASE 条件判断函数

IF 条件判断函数所表达的语义是非 A 即 B，也就是单个条件的判断。我们接下来要看到的 CASE 函数则能够实现

多条件的匹配。首先，我们先来看一看 CASE 函数的语法：

我们通常把 CASE 函数叫做 “CASE WHEN THEN”，聪明的你一定知道这是为什么。SQL 语句中的 CASE 语句是

标准的 SQL 语法，适用于一个条件判断有多种可能值的情况下分别去执行不同的操作，或返回不同的结果值。

CASE 函数有两种写法：简单 CASE 函数写法、CASE 搜索函数写法，它们的区别在于：

简单 CASE 函数写法只适合相等条件判断，不能用于大于、小于、不等于的判断

CASE 搜索函数写法适合复杂条件判断，可用于大于、小于、不等于的判断

理解知识点的最好方式就是学习示例，并模仿示例做实践。首先，我们先来看一个简单 CASE 函数写法的例子（为

了更清晰的看到 SQL 语法，做了格式化处理）：

mysql> SELECT id, name, NULLIF(salary, NULL) AS salary FROM worker WHERE id IN (1, 2, 3);
+----+------+--------+
| id | name | salary |
+----+------+--------+
1	tom	1800
2	jack	2100
3	pony	NULL
+----+------+--------+

CASE expr
 WHEN v1 THEN r1

 WHEN vx THEN rx
 ELSE rn
END

mysql> SELECT
 -> name,
 -> (CASE type
 -> WHEN 'A' THEN '研发'
 -> WHEN 'B' THEN '测试'
 -> WHEN 'C' THEN '运维'
 -> ELSE '其他'
 -> END) AS type
 -> FROM
 -> worker
 -> WHERE
 -> id IN (
 -> 1, 2, 3
 ->);
+------+--------+
| name | type |
+------+--------+
tom	研发
jack	测试
pony	运维
+------+--------+

这条 SQL 语句比较简单，非常容易看懂，就是根据 type 的值返回不同的值，写法和功能都类似于高级语言中的

switch…case 语句。需要特别注意的是 type（CASE 后面的） 在 SQL 语句中的位置。

下面，我们使用 CASE 搜索函数的写法来实现同样的查询：

可以清晰的看到，type 的位置从 CASE 的后面换到了 WHEN 的后面。同时，也就理解了我刚刚所说的这两种写法

之间的区别。下面，我们再来看一个例子：

对于涉及数值范围判断等等类似的例子，则只能使用 CASE 搜索函数的写法。

讲解了 IF 与 CASE 的功能与语法之后，我们来对这两类条件判断函数做一个总结：

CASE 是 SQL 标准定义的，而 IF 是数据库系统的扩展

在高级语言中，CASE 可以使用 IF 来代替，但是 SQL 中却不行

在 SQL 的存储过程和触发器中，用 IF 替代 CASE 的代价是非常高的，难以应用

mysql> SELECT
 -> name,
 -> (CASE
 -> WHEN type='A' THEN '研发'
 -> WHEN type='B' THEN '测试'
 -> WHEN type='C' THEN '运维'
 -> ELSE '其他'
 -> END) AS type
 -> FROM
 -> worker
 -> WHERE
 -> id IN (
 -> 1, 2, 3
 ->);
+------+--------+
| name | type |
+------+--------+
tom	研发
jack	测试
pony	运维
+------+--------+

mysql> SELECT
 -> name,
 -> (CASE
 -> WHEN salary >= 2000 THEN '高收入'
 -> WHEN salary <= 1500 THEN '低收入'
 -> ELSE '中等收入'
 -> END) AS salary
 -> FROM
 -> worker
 -> WHERE
 -> id IN (
 -> 1, 2, 9
 ->);
+------+--------------+
| name | salary |
+------+--------------+
tom	中等收入
jack	高收入
noah	低收入
+------+--------------+

CASE 语句可以让 SQL 变得简单高效，提高执行效率，且通常不会引起性能问题，所以，通常应该作为首选。最

后，理解和掌握知识点的最好方式就是去照猫画虎，模仿别人的写法去实现自己想要的功能。现在就打开你的数据

库，试一试这些 SQL 查询吧。

2 常用的系统函数

MySQL 提供的系统函数虽然功能强大，但是在学习和使用上都是非常简单的。这里我将这些系统函数分为三类进

行讲解：MySQL 自身的基本信息、当前用户信息、库和表相关的信息。

2.1 MySQL 自身的基本信息

MySQL 自身的基本信息大多都存储在系统表中，只提供了一个系统函数：VERSION ()。VERSION () 函数返回的

是 UTF-8 字符集编码的字符串，标识当前登录的 MySQL 服务器版本。

2.2 当前用户信息

用户信息包含了客户端连接 ID、用户名以及当前选择的数据库（由于当前选择的数据库是用户行为，所以，我这里

把它也归类为用户信息）。首先，我们来看一看怎样查询客户端连接 ID：

对于已经建立连接的客户端，MySQL 都会用一个唯一的 ID 去标识它，而 CONNECTION_ID () 函数则可以打印这

个 ID。那么，既然 MySQL 可以打印它，就一定会有地方存储它（不仅是对于当前信息，对于其他信息大多也是成

立的）。

这个连接 ID 实际存储于 MySQL 的两张系统表中：information_schema.PROCESSLIST（ID 字段值）、

performance_schema.threads（PROCESSLIST_ID 字段值）。如下所示：

mysql> SELECT VERSION();
+-----------+
| VERSION() |
+-----------+
| 5.7.28 |
+-----------+

mysql> SELECT CONNECTION_ID();
+-----------------+
| CONNECTION_ID() |
+-----------------+
| 4 |
+-----------------+

另外，通过 SHOW PROCESSLIST 和 SHOW FULL PROCESSLIST 语句也可以查看连接信息。如果你当前使用

的是 root 账户登录，可以查看到所有的用户连接。如果是普通账户，则只能看到自己的。SHOW PROCESSLIST

只会打印前 100 条连接信息，而 SHOW FULL PROCESSLIST 正如它的名字一样，可以打印全部的连接信息。例

如：

聪明的你一定可以发现这条语句打印的信息与 information_schema.PROCESSLIST 表中的列值是一致的。那么，

我就来解释下这些字段代表了什么：

Id：用户客户端连接 MySQL 时，系统自动分配的连接 ID

User：当前连接的用户名

Host：当前用户的 id 和 端口号

db：当前连接选择的数据库，如果没有选择，则是 NULL

Command：当前连接执行的命令，取值为 Sleep（睡眠）、Query（查询）、Connect（连接）

Time：状态持续的时间，单位是秒

State：当前连接执行 SQL 语句的状态

Info：显示当前执行的 SQL 语句

MySQL 提供了多个系统函数（USER (), CURRENT_USER (), SYSTEM_USER (), SESSION_USER ()）用于查看

用户名和主机名，通常，这些函数的返回值都是相同的。例如：

mysql> SELECT * FROM information_schema.PROCESSLIST;
+----+------+-----------------+--------------------+---------+------+-----------+--+
| ID | USER | HOST | DB | COMMAND | TIME | STATE | INFO |
+----+------+-----------------+--------------------+---------+------+-----------+--+
4	root	localhost	imooc_mysql	Query	0	executing	SELECT * FROM information_schema.PROCESSLIST
2	root	localhost:50675	imooc_mysql	Sleep	27		NULL
5	root	localhost:58433	information_schema	Sleep	67		NULL
3	root	localhost:50676	NULL	Sleep	26		NULL
6	root	localhost:58446	NULL	Sleep	38		NULL
+----+------+-----------------+--------------------+---------+------+-----------+--+

mysql> SELECT THREAD_ID, NAME, TYPE, PROCESSLIST_ID FROM performance_schema.threads WHERE PROCESSLIST_ID = 4;
+-----------+---------------------------+------------+----------------+
| THREAD_ID | NAME | TYPE | PROCESSLIST_ID |
+-----------+---------------------------+------------+----------------+
| 30 | thread/sql/one_connection | FOREGROUND | 4 |
+-----------+---------------------------+------------+----------------+

mysql> SHOW PROCESSLIST;
+----+------+-----------------+--------------------+---------+------+----------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+------+-----------------+--------------------+---------+------+----------+------------------+
2	root	localhost:50675	imooc_mysql	Sleep	61		NULL
3	root	localhost:50676	NULL	Sleep	42		NULL
4	root	localhost	imooc_mysql	Query	0	starting	SHOW PROCESSLIST
5	root	localhost:58433	information_schema	Sleep	35		NULL
6	root	localhost:58446	NULL	Sleep	14		NULL
+----+------+-----------------+--------------------+---------+------+----------+------------------+

mysql> SELECT USER(), CURRENT_USER(), SYSTEM_USER(), SESSION_USER();
+----------------+----------------+----------------+----------------+
| USER() | CURRENT_USER() | SYSTEM_USER() | SESSION_USER() |
+----------------+----------------+----------------+----------------+
| root@localhost | root@localhost | root@localhost | root@localhost |
+----------------+----------------+----------------+----------------+

查看当前选择的数据库是非常常见的需求，MySQL 为此提供了两个功能相同的系统函数：DATABASE () 和

SCHEMA ()，这两个函数会打印 UTF-8 字符集编码的数据库名。需要注意的是，如果用户未选择数据库，例如刚

刚登录时，则会打印 NULL。下面，同样给出示例：

MySQL 系统函数提供的用户信息非常有用，例如利用连接 ID 标识每一次查询，可以方便的对每个用户回溯他的查

询历史；可以查看当前连接的所有客户端，定位服务器超载问题等等。

2.3 库和表相关的信息

这里所要讲解的库和表相关的信息位于应用层面，涉及字符集、字符排列方式和自增 ID。字符集指的是系统对字符

编码的方式，我们想要查看当前 MySQL 使用的字符集可以使用 CHARSET () 函数：

当然，如果在你的机器上 CHARSET () 函数返回的字符集与我的不一致也是正常的，因为字符集是可以由你来指定

的。既然涉及到字符集、字符串，就一定会有字符串的排列方式，且使用不同的字符集时，字符串的排列方式也不

一样。我们可以使用 COLLATION () 系统函数来看一看字符串的排列方式：

可以看到，对应于 utf8 字符集，排列方式是 utf8_general_ci；而使用 gbk 字符集，排列方式变成了

gbk_chinese_ci。这其中，ci 是 case insensitive 的意思，即在比较的时候不区分大小写。

-- 未选择数据库
mysql> SELECT DATABASE(), SCHEMA();
+------------+----------+
| DATABASE() | SCHEMA() |
+------------+----------+
| NULL | NULL |
+------------+----------+

-- 切换到 imooc_mysql
mysql> use imooc_mysql;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed

mysql> SELECT DATABASE(), SCHEMA();
+-------------+-------------+
| DATABASE() | SCHEMA() |
+-------------+-------------+
| imooc_mysql | imooc_mysql |
+-------------+-------------+

mysql> SELECT CHARSET('慕课网'), CHARSET('MySQL');
+----------------------+------------------+
| CHARSET('慕课网') | CHARSET('MySQL') |
+----------------------+------------------+
| utf8 | utf8 |
+----------------------+------------------+

mysql> select COLLATION('MySQL'), COLLATION(CONVERT('MySQL' USING gbk));
+--------------------+---------------------------------------+
| COLLATION('MySQL') | COLLATION(CONVERT('MySQL' USING gbk)) |
+--------------------+---------------------------------------+
| utf8_general_ci | gbk_chinese_ci |
+--------------------+---------------------------------------+

MySQL 提供了一个系统函数叫做 LAST_INSERT_ID ()，它可以返回最后生成的 AUTO_INCREMENT 值。它所表

达的语义是：返回最后一个 INSERT 或 UPDATE 为 AUTO_INCREMENT 列设置的第一个生成值。说实话，看到这

句描述，我也是很懵，那就直接看例子吧：

在没有执行 INSERT 之前，当前数据表的最后一条记录的 id 是 10。所以，INSERT 对应的记录 id 是 11，而正如

之前所介绍的， LAST_INSERT_ID () 函数返回了 11。这种情况是插入了一条数据，如果一个 INSERT 插入多条数

据呢 ？

可以看到，LAST_INSERT_ID () 函数返回值是 12，这也就是之前所说的 “为 AUTO_INCREMENT 列设置的第一个

生成值”。最后，需要知道，LAST_INSERT_ID 与表是无关的，如果先把数据插入到 A 表中，再把数据插入到 B 表

中，返回的是 B 表中的 id 值。

3 总结

mysql> INSERT
 -> INTO
 -> `worker` (
 -> `type`, `name`, `salary`
 ->)
 -> VALUES
 -> ('A', 'test-1', 1000);

mysql> SELECT id FROM worker WHERE name = 'test-1';
+----+
| id |
+----+
| 11 |
+----+

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 11 |
+------------------+

mysql> INSERT
 -> INTO
 -> `worker` (
 -> `type`, `name`, `salary`
 ->)
 -> VALUES
 -> ('A', 'test-2', 1000),
 -> ('B', 'test-3', 1000),
 -> ('C', 'test-4', 1000);

mysql> SELECT id FROM worker WHERE name in ('test-2', 'test-3', 'test-4');
+----+
| id |
+----+
| 12 |
| 13 |
| 14 |
+----+

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 12 |
+------------------+


04 学会聚合与分组聚合是很有必
要的 06 常常被忽略的用户与权限

合理的使用条件判断函数可以在很大程度上简化代码的编写，同时由于条件判断通常不会很复杂，所以，不用过分

担心服务器的性能问题。系统函数常常用来查看系统信息与定位问题，相对来说，使用场景没有条件判断函数广

泛。但是，也仍然非常重要，需要多去理解和动手实践。

4 问题

举例说明你在日常的工作、学习中是怎样使用条件判断函数的 ？

MySQL 的默认字符排列方式是大小写不敏感的，如果想要大小写敏感，你会怎么做呢 ？

5 参考资料

《高性能 MySQL（第三版）》

MySQL 官方文档：INFORMATION_SCHEMA PROCESSLIST Table

MySQL 官方文档：charset

}

https://dev.mysql.com/doc/refman/5.7/en/processlist-table.html
https://dev.mysql.com/doc/refman/5.7/en/charset.html

	1 常用的条件判断函数
	1.1 IF 条件判断函数
	1.2 CASE 条件判断函数

	2 常用的系统函数
	2.1 MySQL 自身的基本信息
	2.2 当前用户信息
	2.3 库和表相关的信息

	3 总结
	4 问题
	5 参考资料

