
更新时间：2020-03-27 10:12:59

12 死锁是怎么出现的？又是怎么解决的呢？

死锁这个概念大家应该是很熟悉了，它最早出现于操作系统中，指的是两个进程持有对方想要的资源，但是又都不

会释放这些资源，那么，就只能无止境的等待。在 MySQL 中，我们说的死锁是事务相关的，所以，不同的存储引

擎死锁的产生条件和解决办法也是不相同的。这一节里，我们就要去看一看在 InnoDB 中，死锁是怎么出现的，又

怎样去避免和解决它。

1 你需要知道的死锁理论

这里所涉及的死锁理论不仅仅适用于 InnoDB，同样也适用于操作系统和我们编写的代码。学习这些基本理论是非

常重要的，它将会有助于我们去判断（各种应用中）是否发生了死锁，以及指导我们怎样去避免死锁等等。

1.1 什么是死锁

首先，我们先来读一读死锁的定义：

当两个以上的运算单元，双方都在等待对方停止运行，以获取系统资源，但是没有一方提前退出时，就称之为

死锁。

智慧，不是死的默念，而是生的沉思。——斯宾诺莎

file:///read/71/article/1696
file:///read/71/article/1703

死锁是计算机系统中的常见问题，之后被引申到类似场景的各种应用中。由于资源占用是互斥的，当某个进程（或

事务）提出资源申请后，使得其他进程在无外力协助下，永远分配不到资源而无法继续运行，此时就称系统处于死

锁状态或产生了死锁。

1.2 死锁产生的必要条件

任何事件的产生都一定会有其前提条件，死锁自然也不会例外。对于死锁的产生，必须要同时具备以下的四个条件

（必要条件）：

互斥条件：某个资源在同一时刻只能被一个进程占有

不可剥夺条件：一个进程占有的资源，在没有使用完之前，不能被其他的进程抢占

请求与保持条件：一个进程因请求资源阻塞时，对自己占据的资源不释放

循环等待条件：若干个进程之间形成了一种头尾相接的循环等待资源关系

所谓必要条件，就是要同时满足，那么，我们也可以得到启发：打破死锁的关系，只需要让以上的四个条件不同时

满足就可以了。

数据库死锁的影响是非常大的，在生产环境中，几乎是致命的，随时可能会导致系统崩溃。例如，某张表由于各种

原因出现了死锁，那么，所有涉及这张表的操作都会被阻塞，不论读写。这就会使很多操作在队列里排队，占用宝

贵的数据库连接。最终会导致数据库连接耗尽、各种操作超时等等，致使系统各项指标异常，进而引发系统崩溃。

所以，你需要去理解死锁，尽量避免死锁，并在出现死锁后能够快速处理死锁。

2 InnoDB 中出现的死锁

根据之前对死锁的描述（定义及必要条件），我们应该可以自己 “制造出” 死锁。同时，在工作中，不恰当的使用方

法与并发事务引起的死锁也是很常见的。下面，我将会模拟一些死锁的案例，因为你只有知道怎样的操作会引起死

锁，才会想办法不做那样的操作。

2.1 满足死锁的必要条件模拟死锁

要让事务的操作过程死锁，就必须同时满足四个条件（你可以想一想，怎样把死锁的四个条件翻译为 InnoDB 死锁

的四个条件）。首先，仍然是给出一些示例数据（对，没错，还是那个常见的 worker 表）：

出现死锁，至少需要有两个事务在同时工作，所以，我们需要开启两个 MySQL 客户端，我把它们称之为 “会话 A”

和 “会话 B”。接下来，我要演示一个完整的死锁过程（当然也会附有详细的注释说明），一起看看吧。

mysql> SELECT * FROM worker WHERE id < 3;
+----+------+------+--------+---------+
| id | type | name | salary | version |
+----+------+------+--------+---------+
| 1 | A | tom | 1800 | 0 |
| 2 | B | jack | 2100 | 0 |
+----+------+------+--------+---------+

最后，你会发现，“会话 A” 更新 id = 2 的记录执行成功了（注意看执行语句耗时，这是在等待锁），这是因为 “会

话 B” 出现了死锁被 MySQL KILL 掉了。所以，MySQL 才会建议我们重新开启事务。

以上就是一个最简单、最典型的 InnoDB 死锁案例，相信你看到这个过程之后，会对死锁有更进一步的理解。那

么，得出 InnoDB 死锁产生的必要条件也就是顺水推舟了：

至少存在两个并发事务

每个事务都持有锁资源，但是都不会释放

每个事务都在申请新的锁资源

事务之间形成了锁资源的循环等待

2.2 工作中遇到的死锁

我们在工作中遇到的死锁，绝大多数都是 “唯一键”（列值唯一）引起的。好的，那我们先给 worker 表添加一个唯

一性约束吧。执行如下 SQL 语句（执行后可以自行验证下是否添加成功）：

-- “会话 A” 关闭自动提交
mysql> SET AUTOCOMMIT = off;
Query OK, 0 rows affected (0.00 sec)

-- “会话 A” 开启事务
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

-- “会话 A” 更新 id = 1 的记录（更新什么不重要，重要的是这个更新事务）
mysql> UPDATE worker SET type = 'B' WHERE id = 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

-- “会话 B” 关闭自动提交
mysql> SET AUTOCOMMIT = off;
Query OK, 0 rows affected (0.00 sec)

-- “会话 B” 开启事务
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

-- “会话 B” 更新 id = 2 的记录（更新什么同样是不重要的）
mysql> UPDATE worker SET type = 'A' WHERE id = 2;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

-- “会话 A” 更新 id = 2 的记录（你会发现事务卡住了）
mysql> UPDATE worker SET type = 'A' WHERE id = 2;

-- “会话 B” 更新 id = 1 的记录（可以看到，出现了死锁，MySQL 报错了，并让我们尝试重启事务）
mysql> UPDATE worker SET type = 'B' WHERE id = 1;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

-- 回到 “会话 A”（注意，我们此时并不做任何操作），看看发生了什么
mysql> UPDATE worker SET type = 'A' WHERE id = 2;
Query OK, 1 row affected (42.99 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> ALTER TABLE `worker` ADD UNIQUE(`name`);
Query OK, 0 rows affected (0.07 sec)
Records: 0 Duplicates: 0 Warnings: 0

在现实场景中，不同的 worker 有相同的 name 当然是正常的。但是，如果业务并发量比较大，相同的 name 反复

插入，不仅会出现 Unique Key 冲突，还可能会出现死锁。为了模拟这一类死锁，我们需要开启三个 MySQL 客户

端（确实有点多，一定不要搞乱了），称为：“会话 A”、“会话 B”、“会话 C”。下面，开启死锁之旅吧。

之所以会出现死锁，是因为在插入数据时，MySQL 会给行记录加上排它锁。示例中的三个操作都开启了事务，其

中一个（“会话 A”）获取了排它锁开始插入，之后的事务（“会话 B”，“会话 C”）再去执行时会出现 Duplicate

Key（重复的值）问题，此时它们都会去申请该行记录的共享锁。如果这个时候，占据排它锁的事务出现回滚（“会

话 A”），另外的两个事务会同时去申请排它锁。但是，在数据库中，排它锁和共享锁是互斥资源，也就导致了死

锁。

之所以在出现 Duplicate Key 时会加上共享锁，是因为冲突检测是读操作，所以，冲突之后的轮询仍然会有共享限

制。我们在工作中遇到的死锁几乎都是由这类情况引起的，那么，参照当前的案例，你能再列举几个工作中死锁的

场景吗 ？

3 怎样发现系统中的死锁

死锁问题并不容易解决，但是，首先第一步，你需要知道哪里发生了死锁。在 MySQL 中，我们可以通过查看命令

输出和系统表数据来定位死锁问题，下面，一起来看看吧。

3.1 命令输出锁信息

MySQL 提供了三个常用的系统命令，用于查看会话状态、锁信息以及死锁记录信息。首先，查看会话状态可以使

用 PROCESSLIST 命令（需要有 root 权限，之前已经见到过了），如下所示。

-- “会话 A” 开启事务（需要关闭自动提交）
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

-- “会话 A” 插入一条 name = Java 的记录（其他字段任意即可）
mysql> INSERT INTO `worker` (`type`, `name`, `salary`, `version`) VALUES ('A', 'Java', 1800, 0);
Query OK, 1 row affected (0.00 sec)

-- “会话 B” 开启事务（需要关闭自动提交）
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

-- “会话 B” 插入同样的 Java 记录，事务卡住（如果试验过程中出现了锁等待超时，重新执行插入即可）
mysql> INSERT INTO `worker` (`type`, `name`, `salary`, `version`) VALUES ('A', 'Java', 1800, 0);

-- “会话 C” 开启事务（需要关闭自动提交）
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

-- “会话 C” 插入同样的 Java 记录，事务卡住（如果试验过程中出现了锁等待超时，重新执行插入即可）
mysql> INSERT INTO `worker` (`type`, `name`, `salary`, `version`) VALUES ('A', 'Java', 1800, 0);

-- “会话 A” 回滚
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)

-- “会话 B” 插入成功（注意锁等待时间）
mysql> INSERT INTO `worker` (`type`, `name`, `salary`, `version`) VALUES ('A', 'Java', 1800, 0);
Query OK, 1 row affected (14.12 sec)

-- “会话 C” 死锁了，且被 MySQL KILL 掉了
mysql> INSERT INTO `worker` (`type`, `name`, `salary`, `version`) VALUES ('A', 'Java', 1800, 0);
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

我们需要重点关注 State（会话状态）字段，如果有很多会话的 State 字段值是 waiting for ... lock，基本可以判断

当前系统中出现了死锁。但是，这个命令只能告诉我们这么多，具体是哪张表、哪条 SQL 语句引起的死锁，我们

还是一无所知的。

MySQL 提供了一个命令，可以用来查询是否锁表。在具体的介绍它之前，我们先来看一看它的使用方法（我觉得

倒叙的方式会更好的帮助你理解）：

从以上操作过程可以看到，我们先去锁住 worker 表，并通过 SHOW OPEN TABLES 命令确认了这一情况，最后

释放了锁。 SHOW OPEN TABLES 的作用是列出当前在表缓存中打开的非临时表，语法如下：

其输出包含四列，含义分别是：

Database：库名

Table：表名

In_use：表锁或锁请求的数量

Name_locked：是否锁定表名（删除表或重命名表时需要）

我们可以使用它来查看当前系统中被锁定的表，以及判断某一张表是否被锁定。例如：我想看一看 worker 表是否

被锁定，可以这样（注意语法）：

mysql> SHOW FULL PROCESSLIST;
+----+------+-----------------+--------------------+---------+------+----------+-----------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+------+-----------------+--------------------+---------+------+----------+-----------------------+
3	root	localhost:50112	imooc_mysql	Sleep	54		NULL
4	root	localhost:50113	NULL	Sleep	72		NULL
5	root	localhost	imooc_mysql	Sleep	725		NULL
6	root	localhost	imooc_mysql	Sleep	934		NULL
7	root	localhost	imooc_mysql	Query	0	starting	SHOW FULL PROCESSLIST
8	root	localhost:52292	information_schema	Sleep	62		NULL
9	root	localhost:52293	NULL	Sleep	32		NULL
10	root	localhost	imooc_mysql	Sleep	946		NULL
+----+------+-----------------+--------------------+---------+------+----------+-----------------------+

-- 先去显示的锁住 imooc_mysql 库中的 worker 表（可以锁住任意表）
mysql> LOCK TABLES imooc_mysql.worker READ;
Query OK, 0 rows affected (0.00 sec)

-- 查询锁表的情况
mysql> SHOW OPEN TABLES WHERE In_use > 0;
+-------------+--------+--------+-------------+
| Database | Table | In_use | Name_locked |
+-------------+--------+--------+-------------+
| imooc_mysql | worker | 1 | 0 |
+-------------+--------+--------+-------------+
1 row in set (0.00 sec)

-- 操作完了之后，别忘了释放锁
mysql> UNLOCK TABLES;
Query OK, 0 rows affected (0.00 sec)

SHOW OPEN TABLES
 [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

在讲解第三个系统命令（用于查看死锁记录信息）之前，我们先来说一说 InnoDB 的监控机制。MySQL 提供了一

套 InnoDB 的监控机制，主要分为两种：标准监控和锁监控。想要获取死锁日志，我们需要开启 InnoDB 的标准监

控，但是通常锁监控最好也打开，它可以提供一些额外的锁信息。打开方式如下：

执行命令 SHOW ENGINE INNODB STATUS 可以查看死锁记录信息，但是它有个限制，只能拿到最近一次的死锁

日志（这也基本上够用了，因为面对每一个可能发生的死锁，我们都应该去极力避免或解决）。命令打印信息及日

志分析如下所示（内容太多了，部分信息使用省略号代替）：

-- In_use 字段为 0，代表 worker 表没有被锁定
mysql> SHOW OPEN TABLES FROM imooc_mysql like 'worker';
+-------------+--------+--------+-------------+
| Database | Table | In_use | Name_locked |
+-------------+--------+--------+-------------+
| imooc_mysql | worker | 0 | 0 |
+-------------+--------+--------+-------------+
1 row in set (0.00 sec)

-- 开启标准监控
SET GLOBAL innodb_status_output = ON;

-- 关闭标准监控
SET GLOBAL innodb_status_output = OFF;

-- 开启锁监控
SET GLOBAL innodb_status_output_locks = ON;

-- 关闭锁监控
SET GLOBAL innodb_status_output_locks = OFF;

从这个命令的输出内容中可以看到大量的死锁日志信息，但是仅仅凭借这些日志还是很难定位死锁的，只是知道个

大概（可能是执行了哪些语句触发了死锁）。也就是说，想要确定死锁，除了通过系统命令的输出之外，还应该去

结合应用程序的代码来进行分析。

3.2 InnoDB 引擎关于锁的表

MySQL5.5 之后，information_schema 系统库中增加了三张关于锁的表（注意，是与 InnoDB 相关的）：

INNODB_TRX：当前运行的事务

INNODB_LOCKS：当前锁定的事务

INNODB_LOCK_WAITS：当前等待的事务

下面，我们来依次解读下这三张表。首先，查询一下 INFORMATION_SCHEMA.INNODB_TRX 表：

mysql> SHOW ENGINE INNODB STATUS\G
......
-- 这里是一个事务
*** (1) TRANSACTION:
-- ACTIVE 7 sec 表示事务活动时间，inserting 为事务当前正在运行的状态，可能的事务状态有：fetching rows，updating，deleting，inserting 等等
TRANSACTION 8026, ACTIVE 7 sec inserting
-- tables in use 1 表示有一个表被使用，locked 1 表示有一个表锁
mysql tables in use 1, locked 1
-- LOCK WAIT 表示事务正在等待锁
LOCK WAIT 4 lock struct(s), heap size 1136, 2 row lock(s), undo log entries 1
-- 事务的线程信息，以及数据库 IP 地址和数据库名
MySQL thread id 5, OS thread handle 123145495121920, query id 3777 localhost root update
-- 这里显示的是正在等待锁的 SQL 语句，死锁日志里每个事务都只显示一条 SQL 语句
INSERT INTO `worker` (`type`, `name`, `salary`, `version`) VALUES ('A', 'Java', 1800, 0)
-- 这里显示的是事务正在等待什么锁，RECORD LOCKS 表示记录锁
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 43 page no 6 n bits 80 index name of table `imooc_mysql`.`worker` trx id 8026 lock_mode X locks gap before rec insert inte
ntion waiting
Record lock, heap no 5 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
......

-- 这里是第二个事务，与第一个事务的信息基本相同，那么，相同的部分将不再赘述
*** (2) TRANSACTION:
TRANSACTION 8027, ACTIVE 4 sec inserting
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1136, 2 row lock(s), undo log entries 1
MySQL thread id 10, OS thread handle 123145497071616, query id 3779 localhost root update
INSERT INTO `worker` (`type`, `name`, `salary`, `version`) VALUES ('A', 'Java', 1800, 0)
-- 标识事务二持有什么锁，这个锁往往就是事务一处于锁等待的原因
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 43 page no 6 n bits 80 index name of table `imooc_mysql`.`worker` trx id 8027 lock mode S locks gap before rec
Record lock, heap no 5 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
......

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 43 page no 6 n bits 80 index name of table `imooc_mysql`.`worker` trx id 8027 lock_mode X locks gap before rec insert inte
ntion waiting
Record lock, heap no 5 PHYSICAL RECORD: n_fields 2; compact format; info bits 0
......

INNODB_TRX 表记录了当前处于运行状态的所有事务，包含非常详细的信息，例如：事务是否正在等待一个锁、

事务是否正在执行等等。各个列表达的含义已经在查询 SQL 中给出，弄懂了每一列的含义，也就基本上明白了这

张表的含义。

相对于复杂的 INNODB_TRX，INNODB_LOCKS 表就简单许多了。我们来查询下看看吧：

INNODB_LOCKS 记录的是 InnoDB 事务去请求但没有获取到的锁信息和事务阻塞其他事务的锁信息，各个字段的

含义也比较简单，解读如下：

lock_id：锁 ID

lock_trx_id：占据锁的事务 ID

lock_mode：锁模式。可取的值包含：S, X, IS, IX, GAP, AUTO_INC, UNKNOWN

lock_type：锁类型。RECORD 是行锁，TABLE 是表锁

lock_table：被锁的表名

lock_index：lock_type 为行锁时，该值为索引名，否则为空

lock_space：lock_type 为行锁时，该值为锁记录的表空间的 id，否则为空

lock_page：lock_type 为行锁时，该值为锁记录页数量，否则为空

lock_rec：lock_type 为行锁时，该值为页内锁记录的堆数，否则为空

lock_data：被锁的数据

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX\G
*************************** 1. row ***************************
 trx_id: 8011 -- 事务 ID
 trx_state: RUNNING -- 事务状态
 trx_started: 2019-12-03 13:09:11 -- 事务开始时间
 trx_requested_lock_id: NULL -- 等待事务的锁 ID
 trx_wait_started: NULL -- 事务开始等待的时间
 trx_weight: 2 -- 事务的权重，反映了一个事务修改和锁住的行数
 trx_mysql_thread_id: 6 -- 事务线程 id
 trx_query: NULL -- 事务 SQL 语句
 trx_operation_state: NULL -- 事务当前运行状态
 trx_tables_in_use: 0 -- 事务中有多少个表被使用
 trx_tables_locked: 1 -- 事务中有多少个表被锁住
 trx_lock_structs: 1 -- 事务保留的锁数量
 trx_lock_memory_bytes: 1136 -- 事务锁住的内存大小，单位为 BYTES
 trx_rows_locked: 0 -- 事务锁住的行数
 trx_rows_modified: 1 -- 事务更改的行数
 trx_concurrency_tickets: 0 -- 事务并发数
 trx_isolation_level: REPEATABLE READ -- 事务隔离级别
 trx_unique_checks: 1 -- 是否打开唯一性检查的标识
 trx_foreign_key_checks: 1 -- 是否打开外键检查的标识
trx_last_foreign_key_error: NULL -- 事务最后一次外键错误信息
 trx_adaptive_hash_latched: 0 -- 自适应散列索引是否被当前事务锁住的标识
 trx_adaptive_hash_timeout: 0 -- 是否立刻放弃为自适应散列索引搜索 LATCH 的标识
 trx_is_read_only: 0 -- 事务是否是只读的
trx_autocommit_non_locking: 0 -- 事务的自动提交是否被打开
1 row in set (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCKS;
+--------------+-------------+-----------+-----------+------------------------+------------+------------+-----------+----------+----------+
| lock_id | lock_trx_id | lock_mode | lock_type | lock_table | lock_index | lock_space | lock_page | lock_rec | lock_data|
+--------------+-------------+-----------+-----------+------------------------+------------+------------+-----------+----------+----------+
| 8012:43:6:12 | 8012 | S | RECORD | `imooc_mysql`.`worker` | name | 43 | 6 | 12 | 'Java' |
| 8011:43:6:12 | 8011 | X | RECORD | `imooc_mysql`.`worker` | name | 43 | 6 | 12 | 'Java' |
+--------------+-------------+-----------+-----------+------------------------+------------+------------+-----------+----------+----------+
2 rows in set, 1 warning (0.00 sec)

好的，只剩下最后一张表了，恰巧，它也是最简单的，只包含四个数据列。我们 SELECT 一下吧：

这张表记录了事务的锁等待状态。当事务量比较少，我们可以直观的查看，当事务量非常大，锁等待也时常发生的

情况下，这个时候就可以通过 INNODB_LOCK_WAITS 表来更加直观的反映出当前的锁等待情况。好吧，同样看看

它的每一列是怎样的含义：

requesting_trx_id：申请锁资源的事务 id

requested_lock_id：申请的锁的 id

blocking_trx_id：阻塞的事务 id

blocking_lock_id：阻塞的锁的 id

关于 InnoDB 引擎这几张有关锁的表，它们更多的是用来查看 MySQL 系统当前的状态。如果想要去定位死锁的原

因，更靠谱的做法肯定还是分析死锁日志。

4 关于死锁问题的建议

理论上说，并发度越高，死锁发生的概率就会越大。虽然不一定能做到完全避免死锁，但是，我们仍可以通过一些

技巧或优化降低死锁出现的概率。下面，我给出一些开发建议：

尽量避免并发修改数据表数据。这里并不是说不允许并发的出现，而是说将并发修改的过程从数据库中移除，

例如只在内存中操作高并发数据（可以考虑 Redis）

要求每一个事务将需要用到的数据一次性加锁，否则，不允许执行（实现难度太大，且会降低应用的并发度）

避免大事务，尽量将大事务拆分为多个小事务去处理（大事务通常占用资源多，耗时长）

设置锁等待超时参数：innodb_lock_wait_timeout。并发较高的情况下，大量事务无法获得锁而挂起，会严重的

影响系统性能，减少锁等待时间，不做无意义的等待

当然，以上这些只是建议，不一定需要这样做，甚至有些场景下是不妥的。定位死锁是很难的，不仅需要非常了解

业务需求，还需要懂得 InnoDB 中的各种锁机制。所以，尽量在早期做好避免死锁的准备工作。

5 总结

不可否认，关于死锁的话题肯定是不简单的。定位死锁与解决死锁都需要非常丰富的经验，所以，不必要担心它的

学习难度，也不要吝啬你的学习时间。其实，又何止是死锁呢，对于任何知识点，都是欲速则不达的。经验主义教

会我们，你见的多了，自然也就会了。

6 问题

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_LOCK_WAITS;
+-------------------+-------------------+-----------------+------------------+
| requesting_trx_id | requested_lock_id | blocking_trx_id | blocking_lock_id |
+-------------------+-------------------+-----------------+------------------+
| 8012 | 8012:43:6:12 | 8011 | 8011:43:6:12 |
+-------------------+-------------------+-----------------+------------------+
1 row in set, 1 warning (0.00 sec)


11 面试常见的高级查询 - 连接、
联合、子查询 

13 学会对MySQL做基准测试，掌
握数据库性能

你在工作中遇到过死锁吗 ？能举例说明吗 ？

学会模拟死锁，理解其原理的同时，尝试去分析死锁日志 ？

你在工作中是怎样避免死锁的呢 ？出现了死锁，又是怎样解决的呢 ？

7 参考资料

《高性能 MySQL（第三版）》

MySQL 官方文档：InnoDB INFORMATION_SCHEMA Transaction and Locking Information

MySQL 官方文档：Deadlocks in InnoDB

MySQL 官方文档：Configuring Thread Concurrency for InnoDB

MySQL 官方文档：InnoDB Startup Options and System Variables

}

https://dev.mysql.com/doc/refman/5.6/en/innodb-information-schema-transactions.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-deadlocks.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-performance-thread_concurrency.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html

	1 你需要知道的死锁理论
	1.1 什么是死锁
	1.2 死锁产生的必要条件

	2 InnoDB 中出现的死锁
	2.1 满足死锁的必要条件模拟死锁
	2.2 工作中遇到的死锁

	3 怎样发现系统中的死锁
	3.1 命令输出锁信息
	3.2 InnoDB 引擎关于锁的表

	4 关于死锁问题的建议
	5 总结
	6 问题
	7 参考资料

