
更新时间：2020-04-08 15:55:47

16 视图应该怎样去应用和管理呢？

MySQL 视图是个非常特殊的存在，之所以说它特殊，是因为它非常好用、非常有价值，但是常常被忽略。这个结

论的得出来自于面试经验，我很惊讶的发现，很多工作了两三年的同学，竟然没有用过视图（对视图的概念、使用

方法知之甚少），这实在是不应该了。这一节里，我将会对视图做详细的解读，包括视图的含义、作用、使用方法

等等。

1. 初识视图

视图与数据表有着类似的属性和结构，所以，我们可以像操作表（CRUD）那样来操作视图。那么，在讲解视图的

具体操作方法之前，我们先来搞懂什么是视图、它有哪些作用、以及相对于数据表来说，它有会有哪些优势。

1.1 视图的定义

视图是从数据库中一个或多个表（注意，这是重点）中导出来的表，但是，它是一个虚拟表。另外，视图还可以在

已经存在的视图之上再去定义。也就是说，视图的来源可以是表，也可以是视图。

视图与表一样，只要定义之后便会存储在数据库中，但是它与表最大的不同是：视图并不存储数据，我们通过视图

看到的数据只是存放在表中的数据。正是由于视图的基本结构与属性与数据表是类似的，所以，我们可以对它进行

查询、修改、删除等操作。最后，还需要知道视图与表之间的联系：

成功的奥秘在于目标的坚定。——迪斯雷利

file:///read/71/article/1710
file:///read/71/article/1754

当对视图中的数据进行修改，对应表中的数据也会被修改

当对表中的数据进行修改，与它相关联的视图数据也会发生变化

可以看到，视图的定义并不复杂，但是这里面所涉及的内容确是不少。好好理解关于视图的定义，特别是它与表之

间的联系，这将在接下来讲解视图操作时起到非常重要的指导作用。

1.2 视图的作用

其实，关于视图有什么用，真的不好解释。下面，我们先去创建两张表（注意，这是数据表，不是视图），之后，

再通过表去把视图的作用说清楚。

我在 imooc_mysql 库（这并没有特别的含义）中创建了两张表：fruit_order 和 fruit，需要特别注意的是表中的各个

字段有的是 NOT NULL，而有的并没有标记。我建议不要随意更改这两张表的定义，因为后面的内容讲解都会使用

到它们。目前，我有两个需求：

对于 fruit，我不想让运营人员看到备注（extra）信息

对于 fruit_order，我想要看到水果的名称（fruit.name）和总价格（fruit_order.count * fruit.price）

虽然，我可以通过连接多表、权限设置的方式实现这两个需求，但是，操作过程会非常繁琐。而视图则提供了一个

很好的解决办法，创建视图可以取自表的部分信息、多表数据之间的计算等等，这样既能简单的满足需求，也不会

破坏原表的结构。

1.3 视图的优势

视图最直接的优势就是简单，它不仅可以简化用户对数据的理解，也可以最大程度的简化用户的操作（想想复杂的

连接，那可真是噩梦）。除了简单之外，视图还最大程度的保证了数据的安全性，这主要体现在以下四点：

使用权可被限制在母表（基于这张表创建的视图）的行的子集上

使用权可被限制在母表的列的子集上

使用权可被同时限制在母表的行和列的子集上

使用权可被限制在多个母表的连接所限定的行上

理解了视图的概念、思想，以及知道了它能用来做什么，接下来，我们就一起去看一看怎样操作、使用视图，并从

中发现视图更多的特性。

2. 创建视图

CREATE TABLE `imooc_mysql`.`fruit_order` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'id',
 `count` int(11) NOT NULL COMMENT '个数',
 `fruit_id` bigint(20) NOT NULL COMMENT '关联 fruit 表 id',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='水果订单表';

CREATE TABLE `imooc_mysql`.`fruit` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'id',
 `name` varchar(32) NOT NULL COMMENT '名称',
 `price` int(11) NOT NULL COMMENT '价格',
 `extra` varchar(256) COMMENT '备注',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='水果表';

http://fruit.name

视图中的数据来自于真实的数据表，所以，可以猜想创建视图需要使用到 SELECT 语句去查询表。这里，我先去

解读创建视图的语法，之后，再去创建视图完成之前的两个需求。

2.1 创建视图的语法解读

在谈到视图定义的时候就说过，视图可以基于一张表创建，也可以基于多张表创建，那么，在 MySQL 中到底应该

怎样创建视图呢 ？我们先来看一看视图的创建语法：

官网给出的这个语法确实晦涩难懂，下面，我将对其中的关键字进行解读：

CREATE 表示创建新的视图、REPLACE 表示替换已经创建的视图

ALGORITHM 表示视图选择的算法，取值有三个

UNDEFINED：让 MySQL 来自动选择算法

MERGE：将使用的视图语句和定义合并起来，使视图定义的某一部分取代语句对应的部分

TEMPTABLE：将视图的结果存入临时表，之后使用临时表来执行语句

view_name 指定视图的名称、column_list 指定视图的属性列

SELECT_statemment 表示 SELECT 语句，也就是视图的母表查询语句

WITH CHECK OPTION 表示视图在更新时保证在视图的权限范围内，其中：

CASCADED：默认值，表示更新视图时要满足所有相关视图和表的条件

LOCAL：表示更新视图时满足该视图本身定义的条件即可

另外，需要注意，创建视图需要有 CREATE VIEW 权限，以及针对母表 SELECT 的权限。如果是 CREATE OR

REPLACE 还要求对视图有 DROP 的权限。

2.2 创建视图实操

我们在创建视图之前，先去做一些准备工作，即在 fruit_order 和 fruit 表中插入一些数据：

fake 数据之后，我们先来处理第一个需求：对于 fruit，我不想让运营人员看到备注（extra）信息。创建如下视图：

CREATE [OR REPLACE] [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 VIEW view_name [(column_list)]
 AS SELECT_statemment
 [WITH [CASCADED | LOCAL] CHECK OPTION]

-- 向 fruit 表中插入数据
INSERT INTO `fruit`(`name`, `price`, `extra`) VALUES('苹果', 5, 'a');
INSERT INTO `fruit`(`name`, `price`, `extra`) VALUES('香蕉', 6, 'b');
INSERT INTO `fruit`(`name`, `price`, `extra`) VALUES('大枣', 7, 'c');
INSERT INTO `fruit`(`name`, `price`, `extra`) VALUES('葡萄', 8, 'd');

-- 向 fruit_order 表中插入数据， 注意，fruit_id 要与 fruit 相对应
INSERT INTO `fruit_order`(`count`, `fruit_id`) VALUES(12, 1);
INSERT INTO `fruit_order`(`count`, `fruit_id`) VALUES(8, 2);
INSERT INTO `fruit_order`(`count`, `fruit_id`) VALUES(7, 3);
INSERT INTO `fruit_order`(`count`, `fruit_id`) VALUES(15, 4);

mysql> CREATE VIEW `imooc_mysql`.`fruit_v` AS SELECT name, price FROM `imooc_mysql`.`fruit`;
Query OK, 0 rows affected (0.03 sec)

以上语句创建了视图 fruit_v，后缀 v 标识这是视图，但这只是我的个人习惯，可以忽略。fruit_v 的母表是 fruit，且

限制使用 fruit 中的两个列。创建完成之后，我们可以去看一看 fruit_v 中的数据：

正如之前所说，视图中的数据是来自于数据表的。在默认情况下（未显示的指定），视图的字段和母表的字段是一

致的，当然你也可以自己来指定。同时，你也可以看到，对于这个需求，使用视图来处理是多么的简单方便。

对于第二个需求，需要使用到两张表的数据，且包含了一个数据计算。可以使用以下语句来创建视图并验证结果

（创建语句太长，做了格式化处理）：

经过对这两个例子的介绍，相信你对视图的理解应该是更进一步了。以此为基础，想一想你在工作中遇到的不好处

理的数据，是否可以使用视图来简化操作，提升工作效率。

3. 查看视图

对于你创建或参与创建的视图，你当然会知道它的字段属性、结构信息等等。但是，对于之前已经存在的或其他人

创建的视图，我们想要查看它的相关信息应该怎么办呢 ？这里，我将会说明两种方式查看视图的定义。

3.1 使用 SHOW 语句查看视图

mysql> SELECT * FROM fruit_v;
+--------+-------+
| name | price |
+--------+-------+
苹果	5
香蕉	6
大枣	7
葡萄	8
+--------+-------+
4 rows in set (0.00 sec)

-- 创建视图 fruit_order_v，SELECT 查询两张表
mysql> CREATE VIEW `imooc_mysql`.`fruit_order_v` (
 -> name ,
 -> count ,
 -> price ,
 -> total
 ->) AS SELECT
 -> name,
 -> count,
 -> price,
 -> count*price
 -> FROM
 -> fruit,
 -> fruit_order
 -> WHERE
 -> fruit_id=fruit.id;
Query OK, 0 rows affected (0.04 sec)

-- 查看 fruit_order_v，验证是否满足需求
mysql> SELECT * FROM fruit_order_v;
+--------+-------+-------+-------+
| name | count | price | total |
+--------+-------+-------+-------+
苹果	12	5	60
香蕉	8	6	48
大枣	7	7	49
葡萄	15	8	120
+--------+-------+-------+-------+
4 rows in set (0.00 sec)

如果想看视图的列属性定义，可以直接使用 DESC 语句。但是，结果中只包含字段定义、数据类型、是否允许为

NULL，默认值等基础信息。如果想要查看视图更加详细的信息，就需要使用 SHOW 语句。例如：

可以看到，除了 Name 和 Comment 之外，其他的都是 NULL，这是因为视图是一个虚表。我们通过查询这条

SHOW 语句的主要目的是确定当前操作的是视图（Comment 字段）而不是数据表（可以使用这条语句查询下数据

表，对比下视图的数据返回）。

如果你想知道当前的视图是怎么定义出来的，可以这样：

可以看到， SHOW CREATE VIEW 语句打印了视图名、视图定义（包含默认选项）以及字符集信息。

3.2 在 information_schema.VIEWS 表中查看视图

我在之前的小节中说过，SHOW 语句的信息其实都来自于表数据，而视图的信息则记录在 information_schema 系

统库中的 VIEWS 表中。这张表中存储了所有的视图定义，可以通过查询它来查看视图的详细信息。如下所示：

-- SHOW TABLE STATUS 语法
SHOW TABLE STATUS LIKE 'view name'；

-- 查看 fruit_v 的信息
mysql> SHOW TABLE STATUS LIKE 'fruit_v'\G
*************************** 1. row ***************************
 Name: fruit_v
 Engine: NULL
 Version: NULL
 Row_format: NULL
 Rows: NULL
 Avg_row_length: NULL
 Data_length: NULL
Max_data_length: NULL
 Index_length: NULL
 Data_free: NULL
 Auto_increment: NULL
 Create_time: NULL
 Update_time: NULL
 Check_time: NULL
 Collation: NULL
 Checksum: NULL
 Create_options: NULL
 Comment: VIEW
1 row in set (0.00 sec)

-- SHOW CREATE VIEW ViewName 用于查看视图定义，注意，视图名不要加引号
mysql> SHOW CREATE VIEW fruit_v\G
*************************** 1. row ***************************
 View: fruit_v
 Create View: CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`localhost` SQL SECURITY DEFINER VIEW `fruit_v` AS select `fruit`.`name
` AS `name`,`fruit`.`price` AS `price` from `fruit`
character_set_client: utf8
collation_connection: utf8_general_ci
1 row in set (0.00 sec)

4. 修改视图

当我们遇到已经存在的视图不满足需求了、母表的字段发生变化了等等情况，就需要去修改视图的结构。为

此，MySQL 提供了两种修改方法： CREATE OR REPLACE VIEW 和 ALTER。下面，我们先去看一看它们的语

法，然后再去使用它们。

4.1 修改视图的两种语法

首先，来看一看 CREATE OR REPLACE VIEW 语句的语法：

你可以发现，创建视图和修改视图的语句是完全一致的。它所表达的语义是：当视图已经存在，修改语句对视图实

现修改（注意，需要有对应的权限）；当视图不存在时，则创建视图。

ALTER 语句则不同，它需要保证你提供的视图是存在的。语法如下：

你又发现了，除了第一个关键字之外，它与创建视图的语法又是一样的，所以，我这里不再赘述了。

4.2 修改视图实操

之前创建的 fruit_v 视图直接使用了 fruit 表中的列名称，如果我想要修改成自定义的名称，可以使用如下语句（C

REATE OR REPLACE 语法完成修改）：

mysql> SELECT * FROM information_schema.VIEWS WHERE TABLE_SCHEMA = 'imooc_mysql' AND TABLE_NAME = 'fruit_v'\G
*************************** 1. row ***************************
 TABLE_CATALOG: def
 TABLE_SCHEMA: imooc_mysql
 TABLE_NAME: fruit_v
 VIEW_DEFINITION: select `imooc_mysql`.`fruit`.`name` AS `name`,`imooc_mysql`.`fruit`.`price` AS `price` from `imooc_mysql`.`fruit`
 CHECK_OPTION: NONE
 IS_UPDATABLE: YES
 DEFINER: root@localhost
 SECURITY_TYPE: DEFINER
CHARACTER_SET_CLIENT: utf8
COLLATION_CONNECTION: utf8_general_ci
1 row in set (0.01 sec)

CREATE OR REPLACE [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 VIEW view_name [(column_list)]
 AS SELECT_statemment
 [WITH [CASCADED | LOCAL] CHECK OPTION]

ALTER [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 VIEW view_name [(column_list)]
 AS SELECT_statemment
 [WITH [CASCADED | LOCAL] CHECK OPTION]

对于所有的水果订单，运营人员想要在原个数（count）之上免费送出一个，可以这样去修改视图（ ALTER 语法完

成修改，且做了格式化处理）：

5. 更新视图

虽然视图是一个虚拟表，但是 MySQL 仍然也允许我们对视图进行插入、更新和删除（但是，强烈不建议这么

做）。但是，这里会存在两个问题：更改视图数据，会影响到母表的数据吗 ？视图可能只涉及母表的部分列，更改

会受到限制吗 ？好的，带着这样的两个问题，我们一起来看看对视图的更改吧。

5.1 更新视图实操

对于视图的插入、更新和删除操作，与数据表的操作过程是一致的。关于这些过程是否会对母表数据产生影响的问

题，我们以对 fruit_v 视图的操作来验证。如下所示：

-- 自定义视图列名称
mysql> CREATE OR REPLACE VIEW `imooc_mysql`.`fruit_v`(`name_v`, `price_v`) AS SELECT name, price FROM `imooc_mysql`.`fruit`;
Query OK, 0 rows affected (0.04 sec)

-- 验证修改视图定义是否成功
mysql> SELECT * FROM fruit_v;
+--------+---------+
| name_v | price_v |
+--------+---------+
苹果	5
香蕉	6
大枣	7
葡萄	8
+--------+---------+
4 rows in set (0.00 sec)

-- 修改视图的定义
mysql> ALTER VIEW `imooc_mysql`.`fruit_order_v` (
 -> name ,
 -> count ,
 -> price ,
 -> total
 ->) AS SELECT
 -> name,
 -> count + 1,
 -> price,
 -> count * price
 -> FROM
 -> fruit,
 -> fruit_order
 -> WHERE
 -> fruit_id=fruit.id;
Query OK, 0 rows affected (0.03 sec)

-- 验证修改视图定义是否成功
mysql> SELECT * FROM fruit_order_v;
+--------+-------+-------+-------+
| name | count | price | total |
+--------+-------+-------+-------+
苹果	13	5	60
香蕉	9	6	48
大枣	8	7	49
葡萄	16	8	120
+--------+-------+-------+-------+
4 rows in set (0.00 sec)

开头中提到的第一个问题已经得到了答案：更改视图数据，其对应母表中的数据一样会发生变化，即这种变化是同

步的。那么，我们再尝试去更改 fruit_order_v 视图数据：

-- 向 fruit_v 视图中插入数据
mysql> INSERT INTO `fruit_v`(`name_v`, `price_v`) VALUES('榴莲', 9);
Query OK, 1 row affected (0.02 sec)

-- 母表 fruit 中多了一条数据（视图插入的），且 extra 字段是 NULL
mysql> SELECT * FROM fruit;
+----+--------+-------+-------+
| id | name | price | extra |
+----+--------+-------+-------+
1	苹果	5	a
2	香蕉	6	b
3	大枣	7	c
4	葡萄	8	d
5	榴莲	9	NULL
+----+--------+-------+-------+
5 rows in set (0.00 sec)

-- 更新 fruit_v 视图中的数据
mysql> UPDATE fruit_v SET price_v = price_v + 10 WHERE name_v = '苹果';
Query OK, 1 row affected (0.02 sec)
Rows matched: 1 Changed: 1 Warnings: 0

-- 母表中对应的数据 price 由5变成了15
mysql> SELECT * FROM fruit WHERE name = '苹果';
+----+--------+-------+-------+
| id | name | price | extra |
+----+--------+-------+-------+
| 1 | 苹果 | 15 | a |
+----+--------+-------+-------+
1 row in set (0.00 sec)

-- 删除 fruit_v 视图中的数据
mysql> DELETE FROM fruit_v WHERE name_v = '榴莲';
Query OK, 1 row affected (0.01 sec)

-- 母表中对应的数据同样被删除
mysql> SELECT * FROM fruit;
+----+--------+-------+-------+
| id | name | price | extra |
+----+--------+-------+-------+
1	苹果	15	a
2	香蕉	6	b
3	大枣	7	c
4	葡萄	8	d
+----+--------+-------+-------+
4 rows in set (0.00 sec)

可以看到，更改视图数据的大多数语句都失败了，这也就验证了 MySQL 对于视图的更改是有限制的（可以读一读

报错信息，思考下为什么 MySQL 不允许这样做）。

5.2 更新视图的限制

刚刚已经看到 MySQL 对视图的更新其实是有限制的，也就是说，在满足或者不满足某些条件时，视图的更新不被

允许。下面，我来对不能更新视图的情况作出总结：

视图中并未包含母表中定义为 NOT NULL 的列

定义视图的 SELECT 语句（字段列表）中使用了数学表达式

定义视图的 SELECT 语句（字段列表）中使用了聚合函数

定义视图的 SELECT 语句中使用了 DISTINCT、UNION、GROUP BY、HAVING 子句

根据我这里描述的条件限制，你可以尝试下创建 “有条件” 的视图，并对之进行修改。验证这些限制的同时，也加深

对视图的理解。

6. 删除视图

由于某些原因，视图不再需要了，很简单，将它删除就好了。MySQL 提供了 DROP VIEW 的语法，可以同时删除

一个或者多个视图。如下所示：

关于语法的解释如下：

DROP VIEW 能够删除一个或多个视图，但是，必须要有每个视图的 DROP 权限

IF EXISTS 用于防止因视图不存在而提示出错

如果给定了 RESTRICT 和 CASCADE，将解析并忽略它们

下面，我们就来删除在本节中创建的两个视图，并验证删除成功。执行如下 SQL 语句：

-- 插入数据失败
mysql> INSERT INTO `fruit_order_v`(`name`, `count`, `price`, `total`) VALUES('榴莲', 2, 10, 20);
ERROR 1348 (HY000): Column 'count' is not updatable

-- 更新 price 字段成功
mysql> UPDATE fruit_order_v SET price = price + 1;
Query OK, 4 rows affected (0.03 sec)
Rows matched: 4 Changed: 4 Warnings: 0

-- 更新 total 字段失败
mysql> UPDATE fruit_order_v SET total = total + 1;
ERROR 1348 (HY000): Column 'total' is not updatable

-- 删除数据失败
mysql> DELETE FROM fruit_order_v WHERE name = '苹果';
ERROR 1395 (HY000): Can not delete from join view 'imooc_mysql.fruit_order_v'

DROP VIEW [IF EXISTS]
 view_name [, view_name] ...
 [RESTRICT | CASCADE]


15 认识日志系统，掌握系统运行
过程 

17 分区表是什么，又该怎么使用
呢？

7. 总结

在合适的场景或需求下，视图可以大幅降低数据查询的复杂度，且能够保证数据的安全，是 MySQL 中非常重要的

知识点。但是，通过本节对视图的介绍，可以看出，理解和使用视图并没有很大的难度。用心学习，不断尝试，你

一定可以把视图掌握的很好。

8. 问题

你能说出视图的适用场景吗（可以提出一些适合使用视图的需求）？

你能总结出视图与数据表之间的区别与联系吗 ？

创建视图，并尝试对视图进行 CRUD 以及修改结构操作 ？

你觉得删除视图之后，它所对应的母表会受到什么影响呢 ？

9. 参考资料

《高性能 MySQL（第三版）》

MySQL 官方文档：CREATE VIEW Statement

MySQL 官方文档：The INFORMATION_SCHEMA VIEWS Table

MySQL 官方文档：DROP VIEW Statement

MySQL 官方文档：Updatable and Insertable Views

MySQL 官方文档：Using Views

}

-- 删除视图 fruit_v 和 fruit_order_v
mysql> DROP VIEW IF EXISTS fruit_v, fruit_order_v;
Query OK, 0 rows affected (0.01 sec)

-- 验证 fruit_v 被删除
mysql> SELECT * FROM fruit_v;
ERROR 1146 (42S02): Table 'imooc_mysql.fruit_v' doesn't exist

-- 验证 fruit_order_v 被删除
mysql> SELECT * FROM fruit_order_v;
ERROR 1146 (42S02): Table 'imooc_mysql.fruit_order_v' doesn't exist

https://dev.mysql.com/doc/refman/5.7/en/create-view.html
https://dev.mysql.com/doc/refman/5.7/en/views-table.html
https://dev.mysql.com/doc/refman/5.7/en/drop-view.html
https://dev.mysql.com/doc/refman/5.7/en/view-updatability.html
https://dev.mysql.com/doc/refman/5.7/en/views.html

	1. 初识视图
	1.1 视图的定义
	1.2 视图的作用
	1.3 视图的优势

	2. 创建视图
	2.1 创建视图的语法解读
	2.2 创建视图实操

	3. 查看视图
	3.1 使用 SHOW 语句查看视图
	3.2 在 information_schema.VIEWS 表中查看视图

	4. 修改视图
	4.1 修改视图的两种语法
	4.2 修改视图实操

	5. 更新视图
	5.1 更新视图实操
	5.2 更新视图的限制

	6. 删除视图
	7. 总结
	8. 问题
	9. 参考资料

