
更新时间：2020-04-10 09:46:20

17 分区表是什么，又该怎么使用呢？

随着业务不断发展，用户量不断增加，MySQL 表中保存的数据也会越来越多，而数据量膨胀带来的最大问题是查

询和删除数据的性能。为了解决这一问题，MySQL 提出了分区表的概念，即把数据按照某一种规则分开存放，这

样无论是查询还是删除都可以仅仅针对数据的子集进行操作，极大的减轻了数据库的压力。这一节里，我们就来看

一看分区表的概念，以及应该怎样使用分区表。

1 分区表概述

数据分区是一种物理（与它相对的概念叫做逻辑）数据库的设计技术，它的目的是为了在特定的 SQL 操作中减少

数据读写的总量以降低响应延迟。下面，我们就一起来看看关于它的详细说明、它的优势以及分类。

1.1 分区表的说明

分区表并不是生成新的数据表，逻辑上仍然是一张表，但是物理数据却存储在多个文件中。在使用分区表之前，需

要先确定你当前的 MySQL 是否支持分区表：

老骥伏枥，志在千里； 烈士暮年，壮心不已。 ——曹操

file:///read/71/article/1751
file:///read/71/article/1786

MySQL 中的分区表只支持水平分区，即按行拆分，不支持垂直分区（按列拆分）。当然，拆分过程也不是随机

的，MySQL 会根据用户定义的规则，将表中的数据行拆分到不同的分区中去。而这里所说的规则也就是分区表所

支持的分类。

1.2 分区表的分类

目前，MySQL 支持四种分区类型，下面，我先简单地对它们进行概念性讲解：

RANGE：范围分区，这种分类将数据划分为连续的范围

LIST：枚举分区，这种分类通过预定义的枚举值对数据进行划分

HASH：哈希分区，这种分类按照哈希函数将数据散列到不同的分区中

KEY：键值分区，是 HASH 分区的一种延伸，哈希值是由 MySQL 系统来产生

在实际的应用中，RANGE 和 HASH 分区是最常被使用的，所以，对于接下来的内容，应该重点关注这两类分区。

1.3 分区表的优势

需要知道，只有当前或预期表的数据量很大（这里的很大确实很难定义，这里我建议不低于100万行）时，才有必

要对表进行分区。相对来说，分区之后会带来以下优势：

分区表的数据可以分布在多个磁盘上，所以，它可以容纳更多的数据

数据管理方便，对于不需要的数据可以直接删除分区

查询数据不需要全表扫描，只需要查询对应的分区，大大提升检索效率

涉及聚合（函数）查询时，可以非常简单的做到数据合并

不过，分区表也只是在特定的场景下才会体现出这些优势。所以，不要盲目的使用分区表，确定需求的同时，也要

理解分区表的意义。

2 RANGE 分区

RANGE 分区是最常见的分区类型，它的规则和思想非常简单，而且普适性强。这里我首先讲解 RANGE 分区的思

想和特性，再以实例的形式讲解应该怎样做到 RANGE 分区。

2.1 RANGE 分区的特性

RANGE 分区基于一个给定连续区间的列值，最常见的是基于时间字段，但是 MySQL 建议分区列最好是整型。所

以，如果分区列是时间，需要转换成整型。例如，日期可以使用 TO_DAYS 函数、timestamp 可以使用

UNIX_TIMESTAMP 函数等等。

可以知道，RANGE 分区的规则是非常简单的，下面，我对此做出总结：

需要为每个分区指定分区范围

-- 如果存在 Name 是 partition，Status 是 ACTIVE 的记录，则说明当前的 MySQL 支持分区表
mysql> SHOW PLUGINS;
+----------------------------+----------+--------------------+-----------------+---------+
| Name | Status | Type | Library | License |
+----------------------------+----------+--------------------+-----------------+---------+
......
| partition | ACTIVE | STORAGE ENGINE | NULL | GPL |
......
+----------------------------+----------+--------------------+-----------------+---------+

所有的分区范围必须保证是连续的，并且不能存在交集

2.2 RANGE 分区的实践

关于 RANGE 分区的实践操作，我这里会讲解三个主题：创建分区、删除分区以及新增分区。首先，对于创建分区

来说，又分为两种情况：创建表时指定分区、对已经存在的表进行分区。

RANGE 分区最常见的应用是报表型数据存储，由于报表型数据通常按天存储（也可能按小时），那么，时间区间

就是最好的分区键。首先，我们先去看创建表时指定分区的案例。如下所示：

我这里创建了 ad_unit_cost 表，它基于 date_ 按照时间范围分区，除了 p6 之外，其他的分区都很好理解。

MAXVALUE 是一个无穷大的值，p6 是一个默认分区，如果插入的数据日期大于等于 2019-06-01（p5 分区所指定

的区间上限）时，将会进入到这个分区。但是，需要注意，如果在定义表时没有指定默认分区，插入数据时间在所

有分区之外时，将会报错。

另外，可以看到，ad_unit_cost 表并没有定义主键，这并不是我忘记了，而是定义就会报错（你可以试一试给

ad_unit_cost 加上主键，再去创建分区表）。在 MySQL 中，创建分区表有一个限制条件：分区表中的唯一索引

（包括主键），都必须包含分区表表达式中的所有列。

创建完了分区表，我们可以去查看分区表的基本信息，这些信息保存在系统库 information_schema 的

PARTITIONS 表中。如下所示：

CREATE TABLE `ad_unit_cost` (
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联所属用户',
 `plan_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广计划 id',
 `unit_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广单元 id',
 `cost` bigint(20) NOT NULL DEFAULT '0' COMMENT '推广单元花费金额',
 `date_` date NOT NULL COMMENT '数据日期，精确到天，yyyy-MM-dd'
) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY RANGE (TO_DAYS(date_)) (
 PARTITION p0 VALUES LESS THAN (TO_DAYS('2019-01-01')),
 PARTITION p1 VALUES LESS THAN (TO_DAYS('2019-02-01')),
 PARTITION p2 VALUES LESS THAN (TO_DAYS('2019-03-01')),
 PARTITION p3 VALUES LESS THAN (TO_DAYS('2019-04-01')),
 PARTITION p4 VALUES LESS THAN (TO_DAYS('2019-05-01')),
 PARTITION p5 VALUES LESS THAN (TO_DAYS('2019-06-01')),
 PARTITION p6 VALUES LESS THAN (MAXVALUE)
);

搞明白了创建表时指定分区的情况，下面我们来看一看对已经存在的表进行分区。假设我们创建了 ad_unit_cost

表，执行如下语句：

之后，随着数据量不断增长，想要对它按照时间范围进行分区，可以这样：

我们使用 ALTER TABLE 的方式实现了同样的效果（查看下 information_schema. PARTITIONS 表，验证下是否

和我说的一致），MySQL 会自动按照规则将表中的数据分配到对应的分区中去。

如果创建了多余的分区，实际上用不到，我们也可以手动把它删除。但是，需要注意，删除一个分区将会把它所有

的数据都删除，即物理删除。我们可以尝试删除 ad_unit_cost 的 p3 分区，如下所示：

非常简单，直接 ALTER TABLE DROP PARTITION 就可以了。那么，想要增加分区又应该怎么办呢 ？MySQL 允

许我们使用 ALTER TABLE ADD PARTITION 的语法增加分区，执行如下语句：

mysql> SELECT
 -> TABLE_NAME,
 -> PARTITION_NAME,
 -> PARTITION_METHOD,
 -> PARTITION_EXPRESSION,
 -> PARTITION_DESCRIPTION
 -> FROM
 -> information_schema.`PARTITIONS`
 -> WHERE
 -> table_name = 'ad_unit_cost';
+--------------+----------------+------------------+----------------------+-----------------------+
| TABLE_NAME | PARTITION_NAME | PARTITION_METHOD | PARTITION_EXPRESSION | PARTITION_DESCRIPTION |
+--------------+----------------+------------------+----------------------+-----------------------+
ad_unit_cost	p0	RANGE	TO_DAYS(date_)	737425
ad_unit_cost	p1	RANGE	TO_DAYS(date_)	737456
ad_unit_cost	p2	RANGE	TO_DAYS(date_)	737484
ad_unit_cost	p3	RANGE	TO_DAYS(date_)	737515
ad_unit_cost	p4	RANGE	TO_DAYS(date_)	737545
ad_unit_cost	p5	RANGE	TO_DAYS(date_)	737576
ad_unit_cost	p6	RANGE	TO_DAYS(date_)	MAXVALUE
+--------------+----------------+------------------+----------------------+-----------------------+
7 rows in set (0.02 sec)

CREATE TABLE `ad_unit_cost` (
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联所属用户',
 `plan_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广计划 id',
 `unit_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广单元 id',
 `cost` bigint(20) NOT NULL DEFAULT '0' COMMENT '推广单元花费金额',
 `date_` date NOT NULL COMMENT '数据日期，精确到天，yyyy-MM-dd'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

ALTER TABLE ad_unit_cost PARTITION BY RANGE (TO_DAYS(date_)) (
 PARTITION p0 VALUES LESS THAN (TO_DAYS('2019-01-01')),
 PARTITION p1 VALUES LESS THAN (TO_DAYS('2019-02-01')),
 PARTITION p2 VALUES LESS THAN (TO_DAYS('2019-03-01')),
 PARTITION p3 VALUES LESS THAN (TO_DAYS('2019-04-01')),
 PARTITION p4 VALUES LESS THAN (TO_DAYS('2019-05-01')),
 PARTITION p5 VALUES LESS THAN (TO_DAYS('2019-06-01')),
 PARTITION p6 VALUES LESS THAN (MAXVALUE)
);

ALTER TABLE ad_unit_cost DROP PARTITION p3;

mysql> ALTER TABLE ad_unit_cost ADD PARTITION(PARTITION p3 VALUES LESS THAN (TO_DAYS('2019-04-01')));
ERROR 1481 (HY000): MAXVALUE can only be used in last partition definition

很遗憾，执行报错了。这是因为对于 RANGE 分区的表，只能添加新分区到分区列表的高端，且当前的分区不能带

有 MAXVALUE 分区，否则无法增加分区。所以，增加分区的工作就交给你去完成（创建分区表时不要指定

MAXVALUE 分区即可）。

3 LIST 分区

LIST 分区与 RANGE 分区在语法方面是高度相似的，区别在于 LIST 是枚举值列表的集合，RANGE 是连续的区间

值集合。也正是因为 LIST 分区限制枚举值，它在实际的企业级开发中使用的并不多。

3.1 LIST 分区的特性

关于 LIST 分区的特性，你需要知道：创建 LIST 分区时，如果有主键，分区时主键必须在其中，不然就会报错；

如果表中没有定义主键，分区则不会有限制。但是，如果定义的是联合主键索引（多个列构成主键），那么，分区

键包含某一个列就可以，不要求整体的主键。

最后，建议 LIST 分区键是 NOT NULL 的列，否则插入 NULL 值记录时，如果枚举值列表中没有定义 NULL 则会插

入失败。这和之前所说的 RANGE 分区不同，RANGE 分区遇到这种情况，会把记录作为最小分区存储。

3.2 LIST 分区的实践

首先，我们先来使用如下的建表语句创建 LIST 分区表：

遗憾的事情又发生了，创建分区表失败了。这也就是我之前所说的：主键必须在分区键中，否则会报错。所以，我

们换一种方式继续创建 LIST 分区表。如下所示：

这一次我将主键设置为 id 和 user_id 的联合索引，符合 LIST 分区的限制，创建成功。同样，与 RANGE 分区类

似，对于不再需要的分区，也可以直接删除掉（注意，删除分区也会删除该分区中所有的数据）。如下所示：

mysql> CREATE TABLE `ad_unit_cost` (
 -> `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键 id',
 -> `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联所属用户',
 -> `plan_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广计划 id',
 -> `unit_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广单元 id',
 -> `cost` bigint(20) NOT NULL DEFAULT '0' COMMENT '推广单元花费金额',
 -> `date_` date NOT NULL COMMENT '数据日期，精确到天，yyyy-MM-dd',
 -> PRIMARY KEY (`id`)
 ->) ENGINE=InnoDB DEFAULT CHARSET=utf8
 -> PARTITION BY LIST (user_id) (
 -> PARTITION p0 VALUES IN (1, 3, 5),
 -> PARTITION p1 VALUES IN (2, 4, 6)
 ->);
-- ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

mysql> CREATE TABLE `ad_unit_cost` (
 -> `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT 'id',
 -> `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联所属用户',
 -> `plan_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广计划 id',
 -> `unit_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广单元 id',
 -> `cost` bigint(20) NOT NULL DEFAULT '0' COMMENT '推广单元花费金额',
 -> `date_` date NOT NULL COMMENT '数据日期，精确到天，yyyy-MM-dd',
 -> PRIMARY KEY (`id`, `user_id`)
 ->) ENGINE=InnoDB DEFAULT CHARSET=utf8
 -> PARTITION BY LIST (user_id) (
 -> PARTITION p0 VALUES IN (1, 3, 5),
 -> PARTITION p1 VALUES IN (2, 4, 6)
 ->);
Query OK, 0 rows affected (0.05 sec)

LIST 分区表增加分区的限制会比 RANGE 分区表弱一些，它在增加分区时，仅要求不包含现在分区值列表中的任

意值。下面，我们验证这个说法并给 ad_unit_cost 表增加新的分区：

4 HASH 分区

日常工作中，当我们提到哈希时，你第一时间会想到什么呢 ？我会想到的是负载均衡，把流量、数据等等按照哈希

值打散，以减轻系统的整体压力。HASH 分区的应用理念也是类似的，接下来，我们就一起来看看。

4.1 HASH 分区的特性

HASH 分区与之前介绍的 RANGE 和 LIST 有很大不同，它是基于给定的分区个数，将数据分配到不同的分区中。

另外，HASH 分区只能针对整数进行 HASH，对于非整型的字段只能通过表达式（可以是 MySQL 中任意有效的函

数或表达式）将其转换为整数。但是，对于非整型的哈希过程会多出一步表达式的计算操作，会影响数据库性能。

HASH 分区的优点在于数据分布的比较均匀（但是，这也要看你实际存储的数据），且可以在分区之后重新定义分

区的大小，MySQL 会将数据重新再分配（但是这会严重的影响数据库性能，应该谨慎使用）。

4.2 HASH 分区的实践

想要创建 HASH 分区表，需要在 CREATE TABLE 语句之后添加 PARTITION BY HASH(expr) 子句，其中，expr

是一个返回一个整数的表达式。下面，我给出一个 HASH 分区表的示例：

“PARTITIONS 4” 标识创建4个分区，如果不显示的指定 PARTITIONS 子句，则默认分区数是1。但是，MySQL 不

允许只写 PARTITIONS，而不指定分区数。执行创建语句完成创建之后，我们可以验证下结果是否符合预期：

ALTER TABLE ad_unit_cost DROP PARTITION p1;

-- 由于原来的 p0 分区中枚举值存在5，所以，重复定义报错了
mysql> ALTER TABLE ad_unit_cost ADD PARTITION(PARTITION p1 VALUES IN (5, 7, 9));
ERROR 1495 (HY000): Multiple definition of same constant in list partitioning

-- 与原来的分区枚举值不冲突，增加分区成功
mysql> ALTER TABLE ad_unit_cost ADD PARTITION(PARTITION p1 VALUES IN (7, 9, 11));
Query OK, 0 rows affected (0.22 sec)
Records: 0 Duplicates: 0 Warnings: 0

CREATE TABLE `ad_unit_cost` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键 id',
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联所属用户',
 `plan_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广计划 id',
 `unit_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广单元 id',
 `cost` bigint(20) NOT NULL DEFAULT '0' COMMENT '推广单元花费金额',
 `date_` date NOT NULL COMMENT '数据日期，精确到天，yyyy-MM-dd',
 PRIMARY KEY (`id`, `user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY HASH(user_id)
PARTITIONS 4;

正如我之前所说，可以给 HASH 分区表重新指定分区大小。可以执行以下语句，将 ad_unit_cost 表的分区个数增

加到10个（自行验证结果）：

那么，如果想要缩减分区的个数呢 ？假如我只想让 ad_unit_cost 表保留2个分区，则可以使用 COALESCE 关键

字。如下所示（同样，自行去验证结果）：

5 KEY 分区

相对来说，在实际的应用中，KEY 分区的出场率是最低频的。KEY 分区的语法和思想与 HASH 分区是极为相似

的，只是在分区算法的实现上不同。接下来，一起简单的看一看吧。

5.1 KEY 分区的特性

由于 KEY 分区与 HASH 分区是类似的，所以，对于它的特性讲解主要集中在与 HASH 分区特性的对比。

KEY 分区对象必须为数据列，不能是基于列的表达式

如果表中存在主键或唯一键，KEY 分区的分区键可以不指定；如果没有，必须指定

HASH 分区使用 MOD 算法实现分区，而 KEY 分区则使用的是 MD5

5.2 KEY 分区的实践

如果我们想要创建的 KEY 分区表定义了主键，则分区键可以不指定，默认即为主键。如下所示：

mysql> SELECT
 -> TABLE_NAME,
 -> PARTITION_NAME,
 -> PARTITION_METHOD,
 -> PARTITION_EXPRESSION,
 -> PARTITION_DESCRIPTION
 -> FROM
 -> information_schema.`PARTITIONS`
 -> WHERE
 -> table_name = 'ad_unit_cost';
+--------------+----------------+------------------+----------------------+-----------------------+
| TABLE_NAME | PARTITION_NAME | PARTITION_METHOD | PARTITION_EXPRESSION | PARTITION_DESCRIPTION |
+--------------+----------------+------------------+----------------------+-----------------------+
ad_unit_cost	p0	HASH	user_id	NULL
ad_unit_cost	p1	HASH	user_id	NULL
ad_unit_cost	p2	HASH	user_id	NULL
ad_unit_cost	p3	HASH	user_id	NULL
+--------------+----------------+------------------+----------------------+-----------------------+
4 rows in set (0.00 sec)

mysql> ALTER TABLE ad_unit_cost ADD PARTITION PARTITIONS 6;
Query OK, 0 rows affected (0.80 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE ad_unit_cost COALESCE PARTITION 2;
Query OK, 0 rows affected (0.55 sec)
Records: 0 Duplicates: 0 Warnings: 0

但是，如果既没有主键，也没有唯一键，不指定的情况下就会报错。可以看到如下建表示例：

这种情况下，想要正确的创建 KEY 分区表，就必须显示的指定分区键。创建表的语句可以修改为（可以自行完成

表的创建以及验证结果是否符合预期）：

由于 HASH 分区与 KEY 分区的思想是一样的，所以，对于分区数量的管理（增加或减少）它们也保持一致。我们

可以使用 COALESCE 减少分区的数量，也可以使用 ALTER TABLE ADD PARTITION 增加分区的数量。

6 总结

分区表的使用频率确实是不高的，它通常仅仅应用于业务系统的报表型（OLAP）应用。但是，它却是 MySQL 对

大数据量存储、管理的一种解决方案，也是需要你去理解和掌握的。至少要知道这个概念、MySQL 提供了这样一

种技术，等遇到此类问题时，才不至于措手不及，一筹莫展。

7 问题

CREATE TABLE `ad_unit_cost` (
 `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键 id',
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联所属用户',
 `plan_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广计划 id',
 `unit_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广单元 id',
 `cost` bigint(20) NOT NULL DEFAULT '0' COMMENT '推广单元花费金额',
 `date_` date NOT NULL COMMENT '数据日期，精确到天，yyyy-MM-dd',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY KEY()
PARTITIONS 4;

mysql> CREATE TABLE `ad_unit_cost` (
 -> `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键 id',
 -> `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联所属用户',
 -> `plan_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广计划 id',
 -> `unit_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广单元 id',
 -> `cost` bigint(20) NOT NULL DEFAULT '0' COMMENT '推广单元花费金额',
 -> `date_` date NOT NULL COMMENT '数据日期，精确到天，yyyy-MM-dd'
 ->) ENGINE=InnoDB DEFAULT CHARSET=utf8
 -> PARTITION BY KEY()
 -> PARTITIONS 4;
ERROR 1075 (42000): Incorrect table definition; there can be only one auto column and it must be defined as a key

CREATE TABLE `ad_unit_cost` (
 `user_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联所属用户',
 `plan_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广计划 id',
 `unit_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '关联推广单元 id',
 `cost` bigint(20) NOT NULL DEFAULT '0' COMMENT '推广单元花费金额',
 `date_` date NOT NULL COMMENT '数据日期，精确到天，yyyy-MM-dd'
) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY KEY(user_id)
PARTITIONS 4;


16 视图应该怎样去应用和管理
呢？ 18 外键是一个非常特殊的存在

你能给 RANGE 分区表增加新的分区吗 ？你是怎么做的呢 ？

如果我只是想清空分区，但是不删除分区，你知道应该怎么做吗 ？

你觉得对于分区表来说，查询会带来什么好处呢 ？可以使用 EXPLAIN 语句验证下你的想法。

你在工作中使用过分区表吗 ？是怎么使用的呢 ？或者谈一谈你理解的分区表的应用场景 ？

8 参考资料

《高性能 MySQL（第三版）》

MySQL 官方文档：Partitioning

}

https://dev.mysql.com/doc/refman/5.7/en/partitioning.html

	1 分区表概述
	1.1 分区表的说明
	1.2 分区表的分类
	1.3 分区表的优势

	2 RANGE 分区
	2.1 RANGE 分区的特性
	2.2 RANGE 分区的实践

	3 LIST 分区
	3.1 LIST 分区的特性
	3.2 LIST 分区的实践

	4 HASH 分区
	4.1 HASH 分区的特性
	4.2 HASH 分区的实践

	5 KEY 分区
	5.1 KEY 分区的特性
	5.2 KEY 分区的实践

	6 总结
	7 问题
	8 参考资料

