
更新时间：2020-05-11 09:27:46

27 服务器性能调优，你知道怎么做吗？

之前所讲解的所有方案设计、调优手段都是针对于表设计或 SQL 语句的，这一节将思考的角度转移到 MySQL 服

务器自身。想要调优 MySQL 服务器的性能，就必须要熟练掌握它的各项配置，即对 my.cnf 文件属性的理解。这

一节我们来看一看影响 MySQL 性能的主要配置项，聊一聊怎样调整能够提高服务器性能。

1. 服务器性能调优指标

在实际的讲解调优参数之前，我们需要先搞清楚衡量 MySQL 性能的指标。在理解这些指标的基础之上，再去调整

参数，才能确定我们的调整是否能给 MySQL 服务器带来性能提升。

1.1 QPS

QPS 是每秒查询次数，在软件工程中，我们通常用它来衡量应用的访问频率。这里，我们需要延伸下它的含义，

即 MySQL 服务器能够处理的峰值 QPS（也是压测的一个重要指标）。影响 QPS 的因素主要有两个：服务器计算

性能和磁盘的 IO 读写能力。对于计算性能，除了要考虑 SQL 查询的复杂度之外，还要考虑硬件的处理能力。而对

于 IO 读写能力来说，完全取决于硬件。所以，绝大多数情况下，升级硬件就能够提升 QPS。

另外，MySQL 提供了 STATUS 命令可以让我们查看当前服务器的 QPS（最后的统计信息中打印了平均每秒查询

次数）。如下所示：

最聪明的人是最不愿浪费时间的人。——但丁

file:///read/71/article/1852
file:///read/71/article/1943

1.2 TPS

TPS 是每秒处理的事务数，同样，我们需要把它的含义延伸为：MySQL 服务器能够处理的峰值 TPS。与 QPS 不

同，TPS 是需要我们自己来计算的：

其中，Trans_commit 代表事务提交数，Trans_rollback 代表事务回滚数。作为衡量 MySQL 服务器的性能指标，它

与 QPS 是类似的，值越大说明性能越高。

虽然升级硬件能够显著的提高 QPS 和 TPS，但并不是所有的企业都会这么做。如果你接触的工具或软件较多，你

会知道，在相同的硬件配置条件下，通过调优配置参数也是可能给性能带来很大提升的。下面，我们就来看一看影

响 MySQL 性能的常用配置参数。

2. MySQL 参数配置优化

MySQL 有着非常多的配置项，即提供的定制化功能非常丰富。但是，就像是惯例一样，常用的配置选项也不会很

多。另外，根据配置项所负责的功能不同，可以把它们分类。下面，我们就来看一看各个功能点的常用配置参数以

及如何对它们进行优化。

2.1 连接相关参数

连接指的是 MySQL 服务器与客户端之间的连接，相关参数的设定主要会影响客户端的行为。例如：是否能够连接

上 MySQL 服务器、关闭交互连接前等待的时间等等。

2.1.1 max_connections 和 max_connect_errors

首先，所有的这些参数，如果之前没有做过改动（通过命令行或者是修改配置文件 my.cnf），则通过 SHOW VARI

ABLES 命令就可以看到其默认值。例如，我们可以看看这两个参数的默认值：

mysql> STATUS

mysql Ver 14.14 Distrib 5.7.28, for macos10.14 (x86_64) using EditLine wrapper

Connection id: 5
Current database: imooc_mysql
Current user: root@localhost
SSL: Not in use
Current pager: less
Using outfile: ''
Using delimiter: ;
Server version: 5.7.28-log MySQL Community Server (GPL)
Protocol version: 10
Connection: Localhost via UNIX socket
Insert id: 1
Server characterset: latin1
Db characterset: latin1
Client characterset: utf8
Conn. characterset: utf8
UNIX socket: /tmp/mysql.sock
Uptime: 2 days 16 hours 36 min 10 sec

Threads: 3 Questions: 2183 Slow queries: 0 Opens: 167 Flush tables: 1 Open tables: 156 Queries per second avg: 0.009

TPS = (Trans_commit + Trans_rollback) / Seconds

其中，max_connections 用于设定服务器的最大并发连接数，取值范围是 1 ~ 10 万，默认值是151。我们需要非常

重视这个参数，因为它决定了 MySQL 允许多少个会话同时建立连接。几乎可以肯定，对于企业级应用来说，默认

值是不够的的，我们通常把它设定为 500 ~ 1000。需要注意，建立连接除了需要占用内存之外，还要求有计算能

力，所以，不要把这个参数设置的太大。

max_connect_errors 这个参数的名字非常形象，它用于指定允许连接不成功的最大尝试次数。它的取值范围是 1 ~

2^64 之间，默认值是 100。需要注意的是，这个参数所表达的并不是 “单次连接最大的 Retry 次数”，而是尝试连接

总的失败次数上限。如果尝试连接的错误数量超过了参数所设定的值，MySQL 服务器则拒绝新的连接。所以，我

们通常会把这个参数设置的比较大，建议1万以上。

2.1.2 interactive_timeout 和 wait_timeout

我们大概率曾经遇到过这样的场景：打开的客户端或者程序在长时间没有被访问之后，需要重新与 MySQL 服务器

建立连接。这其实是 MySQL 的一种优化保护机制，在超过了一定的时间始终没有使用之后，则认为当前的客户端

已经不再使用了，断开连接回收资源。

interactive_timeout 和 wait_timeout 都与客户端会话的自动超时断开有关，其中 interactive_timeout 指的是服务器

在关闭连接之前在一个交互连接上等待的秒数，默认值是 28800，即 8 个小时，建议将这个值调小。wait_timeout

则用于指定关闭非交互连接前等待的秒数，默认值仍是 8 个小时，可以根据业务场景适当的调大这个值。

可以查看这两个参数的默认值（注意，它们的单位都是秒），如下所示：

2.1.3 back_log

我们在使用线程池的时候，如果任务加入的速度超过了线程处理的速度，那么，不断加入的新任务将会被 “丢到” 阻

塞队列中去。与之类似，当短时间内有大量的连接请求，MySQL 主线程无法及时的分配时，就会将连接请求放入

阻塞（等待）队列中。而这个等待队列的长度则由 back_log 参数控制。另外，它与线程池的思想还有一点类似，

就是当队列满了之后，如果还有连接请求，则直接会报拒绝连接错误。

在我们当前的 5.7 版本中，这个参数的默认值是 80，最大值是 65535。我们通常不需要修改这个值，因为对于大

多数 “正常” 的业务场景来说，短暂的建立连接与关闭连接会消耗很多性能，所以，很少会遇到这样的代码逻辑。

2.2 日志相关参数

mysql> SHOW VARIABLES LIKE 'max_connect%';
+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| max_connect_errors | 100 |
| max_connections | 151 |
+--------------------+-------+
2 rows in set (0.00 sec)

mysql> SHOW VARIABLES WHERE VARIABLE_NAME IN ('interactive_timeout', 'wait_timeout');
+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| interactive_timeout | 28800 |
| wait_timeout | 28800 |
+---------------------+-------+
2 rows in set (0.00 sec)

MySQL 中最核心的两个日志是慢查询日志和 Binlog（二进制）日志。其中，慢查询相关的参数只有一个，即设定

慢查询记录时间的阈值，这在 “日志系统” 和 “慢查询问题” 中都已经多次强调了，这里不再赘述。所以，下面，我

们来看一看 Binlog 相关的参数。

2.2.1 log_bin

这个参数是标识是否打开 Binlog 的开关，8.0 之前的版本默认都是 OFF，即关闭状态。对于线上应用来说，Binlog

可以做增量数据收集、数据恢复、主从同步（主备环境）等等。所以，通常情况下，这个参数一定是设置打开的。

另外，由于这是个只读参数，我们只能通过修改 MySQL 的配置文件来打开 Binlog。

2.2.2 max_binlog_size 和 expire_logs_days

不论是用什么语言、什么框架去编写应用程序，都一定会设计日志产出的方式和格式。其中，“方式” 中包含两个重

要的点：

日志怎样滚动，一般会有两种方式：按照大小、按照时间。当然，也可以结合大小和时间。例如：单个日志文

件超过 1GB 就生成一个新的日志文件

日志清理机制，一般会设定为清理 X 天之前的日志，即只保留 X 天的日志

我们先看一看它们的默认值，如下所示：

expire_logs_days 的取值范围是 0 ~ 99，建议把它修改为 7 ~ 14 天；max_binlog_size 的取值范围是 4KB ~

1GB，默认为 1GB（1024 * 1024 * 1024），可以直接使用默认值。

2.3 缓存相关参数

这里的缓存概念是显而易见的，它针对于用户的查询过程。合理的调整这些参数，有利于提高服务器的查询性能，

毕竟从内存中取数据或在内存中完成计算，一定会比操作磁盘的过程更加高效。

2.3.1 have_query_cache、query_cache_type、query_cache_size 和
query_cache_limit

这几个都是与查询缓存相关的参数，其中，have_query_cache 用于标识当前的 MySQL 版本是否支持查询缓存。

对于我们的 5.7 版本，一定是支持的，它的值是 YES。query_cache_type 控制着查询缓存功能的开启与关闭，它

有三个可选项：

0（OFF）：关闭

1（ON）：打开

2（DEMAND）：只有 SELECT 中明确指定 SQL_CACHE 时才缓存

这个参数需要特别注意，打开它需要去设置配置文件，之后再重启 MySQL 服务。如果直接在命令行上设定，则会

返回错误。另外，如果想要关闭查询缓存，唯一的办法也是修改配置文件，在命令行中的修改也不会生效。

mysql> SHOW VARIABLES WHERE VARIABLE_NAME IN ('max_binlog_size', 'expire_logs_days');
+------------------+------------+
| Variable_name | Value |
+------------------+------------+
| expire_logs_days | 0 |
| max_binlog_size | 1073741824 |
+------------------+------------+
2 rows in set (0.00 sec)

query_cache_size 用于指定缓存查询结果集的内存区大小，这个值需要设置为 1024 的整数倍。如果物理机内存足

够，这个值可以设置的大一些。query_cache_limit 标识缓存单个查询所被允许的结果集最大值，即超出这个值之外

的查询结果并不会缓存。它的默认值是 1MB，对于大多数的场景来说，基本是足够的，不需要调整。

2.3.2 sort_buffer_size

sort_buffer_size 是与排序相关的参数，指定单个会话能够使用的排序内存大小，默认值是 256KB（256 *

1024）。它是一个 connection 级别的参数，即在每一个连接第一次需要使用这个内存区的时候，MySQL 一次性分

配所需的内存。关于这个值的设定问题，MySQL 文档中有这样一句话：

On Linux, there are thresholds of 256KB and 2MB where larger values may significantly slow down memory

allocation

它所表达的意思是，sort_buffer_size 并不是越大越好，当超过 2MB 时，则会使用 mmap() 而不是 malloc() 来进行

内存分配，性能大约会降低 30% 左右。所以，将这个值设定为 256KB ~ 2MB 是一个不错的选择。

2.4 InnoDB 存储引擎相关参数

对于 MySQL 数据库来说，存储引擎就像是插件一样，是独立存在的。但是，由于 MySQL 与存储引擎是相辅相成

的，我这里仍然把 InnoDB 相关的参数归类为 MySQL 服务器的参数（据统计，90% 的应用都会选择使用 InnoDB

存储引擎）。

2.4.1 innodb_buffer_pool_size

这是 InnoDB 的核心参数，用于指定 InnoDB 存储引擎专用的缓存区大小，默认值是 128MB（128 * 1024 *

1024），如下所示：

这个缓存区用来缓存表对象的数据及其索引信息，最大能够支持 (2^64 -1)B。如果我们的写（插入、更新、删除）

事件比较多，那么，增大这个值会节省大量的磁盘 IO。另外，innodb_buffer_pool_size 是个全局参数，其所分配的

内存将供所有的 InnoDB 表使用。所以，在条件允许的情况下，这个值越大越好（可以是物理机内存的 70% ~

80%）。

那么，如何确定这个值我们设定的是否合理呢 ？所谓合理，也就是说数据从内存中读取而不是硬盘。我们可以查询

系统变量 Innodb_buffer_pool_pages_free 看看当前 buffer pool 的剩余量。如下所示：

mysql> SHOW VARIABLES LIKE 'innodb_buffer_pool_size';
+-------------------------+-----------+
| Variable_name | Value |
+-------------------------+-----------+
| innodb_buffer_pool_size | 134217728 |
+-------------------------+-----------+
1 row in set (0.01 sec)

mysql> SHOW GLOBAL STATUS LIKE 'innodb_buffer_pool_pages_free';
+-------------------------------+-------+
| Variable_name | Value |
+-------------------------------+-------+
| Innodb_buffer_pool_pages_free | 7737 |
+-------------------------------+-------+
1 row in set (0.00 sec)

也就是说，对于我们当前的存储引擎环境，buffer pool 空间还有剩余。如果发现 Innodb_buffer_pool_pages_free

值很小或为 0，则说明 buffer pool 已经使用殆尽，需要增加 innodb_buffer_pool_size 的值。

2.4.2 innodb_max_dirty_pages_pct

这个参数用于控制脏页（在缓冲区中）的比例，取值范围是 1% ~ 100%，默认值是 75%。如果有大量写入，且写

入数据并不活跃（报表型数据），可以将这个值调低，例如 30%。反之，如果写入或更新的数据是热数据，可以考

虑调大这个值，例如 90%。

这个参数的另一个用途是：当 InnoDB 分配的内存过大时，会导致 Swap 占用严重，可以适当的减小这个值，使

Swap 空间释放出来。MySQL 官方对这个值的建议是不超过 90%，且不低于 15%。设置的太大，缓存中每次更新

需要交换的数据页太多；设置的太小，数据页太小，更新操作缓慢。

3. 服务器调优案例

到目前为止，已经讲解了很多 MySQL 的参数配置项。那么，为了更好的理解它们，我们来看一个调优案例。需要

注意的是，MySQL 自身也需要部署在物理机上，所以，参数配置同样需要去考虑物理机的配置。

3.1 参数配置调优

在调优参数配置之前，我们先来设定物理机的硬件条件。需要注意，由于 CPU 聚焦于计算，且其资源分配完全由

操作系统控制，我们这里将直接忽略 CPU 相关的 “内容”。

物理机内存有 64GB

峰值连接数为 500个

所有的表使用 InnoDB 存储引擎

首先，需要为操作系统预留 25% 的内存，即 64 * 0.25 = 16GB，余下 48GB。为了方便，我们假定这台物理机上

只安装 MySQL 这一个应用，那么，余下的所有内存都可以分配给 MySQL 服务器（理想情况下）。

接下来，配置连接、日志和缓存相关的参数。如下所示（带有解释说明）：

除了当前配置的内存空间之外，每个会话在读写、保持连接上面也需要一定的内存，我们预估为 10MB。所以，当

连接数达到峰值时，所有的会话占用的内存可以达到：500 * (2MB + 10MB) + 256MB = 6GB。那么，物理内存还

剩下 48GB - 6GB = 42GB，可以全部分配给 InnoDB 的缓存池，相关的参数设定如下：

3.2 数据预热

在生产环境中，重启 MySQL 之后，会发现查询过程将会变得比原来慢。这是因为 MySQL 经常操作的热点数据从

InnoDB Buffer Pool 中清空了，那么，从磁盘中读取数据的速度当然比不上内存。为了解决这个问题，MySQL 提

出了预热的概念，即将热点数据重新加载到 InnoDB Buffer Pool 中。在 5.7 版本之前，这会是一个很麻烦的过程；

而在 5.7 之后，这个功能就是默认开启的了。我们先来看看与 “数据预热机制” 相关的两个参数：

其中，innodb_buffer_pool_dump_at_shutdown 所表达的意思是：关闭 MySQL 时导出 InnoDB Buffer Pool 中的数

据。这份数据默认会保存在 InnoDB 的数据目录下，名字和路径由 innodb_buffer_pool_filename 参数控制，如下所

示：

最大连接数设定为峰值连接数的一倍
max_connections = 1000
调大连接不成功的最大尝试次数
max_connect_errors = 10000

超时断开使用默认值，即8小时
interactive_timeout = 28800
wait_timeout = 28800

等待队列可以使用默认值，也可以稍微调大一些
back_log = 100

开启 Binlog
log_bin = ON
单个 Binlog 文件最大为 1GB
max_binlog_size = 1024 * 1024 * 1024
保存近7天的 Binlog（完全看业务数据的重要程度，这里是一个常见值）
expire_logs_days = 7

开启查询缓存
query_cache_type = ON
查询缓存大小，物理机内存足够，可以多分配一些
query_cache_size = 256 * 1024 * 1024
单条语句结果集缓存限制，使用默认值，即1MB
query_cache_limit = 1024 * 1024

排序区大小，注意，这会分配给每个会话
sort_buffer_size = 2 * 1024 * 1024

innodb_buffer_pool_size = 42 * 1024 * 1024 * 1024

-- 值都是 ON，代表是开启状态
mysql> SHOW VARIABLES WHERE VARIABLE_NAME IN ('innodb_buffer_pool_dump_at_shutdown', 'innodb_buffer_pool_load_at_startup');
+-------------------------------------+-------+
| Variable_name | Value |
+-------------------------------------+-------+
| innodb_buffer_pool_dump_at_shutdown | ON |
| innodb_buffer_pool_load_at_startup | ON |
+-------------------------------------+-------+
2 rows in set (0.01 sec)

在启动 MySQL 之后，受 innodb_buffer_pool_load_at_startup 参数控制，会将 ib_buffer_pool 文件数据恢复到

InnoDB Buffer Pool 中。所以，我们在使用 MySQL 的时候，这两个参数最好使用默认值（打开状态），这也是服

务器性能调优的重要一环。

4. 总结

我们在实际使用 MySQL 的时候，性能调优的时间都几乎花在了数据表和 SQL 语句上面，而服务器自身的性能调

优却很容易被忽略。这确实是一个非常严重的问题，很可能就是由于参数配置的并不合理而导致了性能不足。所

以，除了 “表面上” 的调优之外，也要考虑 “根上” 的调优。

5. 问题

谈一谈你对 MySQL 服务器参数的理解 ？

关于服务器性能调优，你有怎样的心得呢 ？可以一起分享下吗 ？

对于你当前正在使用的 MySQL，可以做一些调优工作吗 ？怎么做呢 ？

6. 参考资料

《高性能 MySQL（第三版）》

MySQL 官方文档：Server Status Variables

MySQL 官方文档：Server System Variables

MySQL 官方文档：Query Cache Configuration

MySQL 官方文档：Optimizing InnoDB Disk I/O

MySQL 官方文档：InnoDB Startup Configuration

MySQL 官方文档：How MySQL Uses Memory

MySQL 官方文档：InnoDB Startup Options and System Variables

MySQL 官方文档：Configuring InnoDB Buffer Pool Size

}

-- ib_buffer_pool 是 InnoDB Buffer Pool 中数据保存到磁盘上的文件名
mysql> SHOW VARIABLES LIKE 'innodb_buffer_pool_filename';
+-----------------------------+----------------+
| Variable_name | Value |
+-----------------------------+----------------+
| innodb_buffer_pool_filename | ib_buffer_pool |
+-----------------------------+----------------+
1 row in set (0.01 sec)

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/query-cache-configuration.html
https://dev.mysql.com/doc/refman/5.7/en/optimizing-innodb-diskio.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-init-startup-configuration.html
https://dev.mysql.com/doc/refman/5.7/en/memory-use.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool-resize.html


26 遇到慢查询问题，可以这样思
考与解决 28 带你认识MySQL的系统架构

	1. 服务器性能调优指标
	1.1 QPS
	1.2 TPS

	2. MySQL 参数配置优化
	2.1 连接相关参数
	2.1.1 max_connections 和 max_connect_errors
	2.1.2 interactive_timeout 和 wait_timeout
	2.1.3 back_log

	2.2 日志相关参数
	2.2.1 log_bin
	2.2.2 max_binlog_size 和 expire_logs_days

	2.3 缓存相关参数
	2.3.1 have_query_cache、query_cache_type、query_cache_size 和 query_cache_limit
	2.3.2 sort_buffer_size

	2.4 InnoDB 存储引擎相关参数
	2.4.1 innodb_buffer_pool_size
	2.4.2 innodb_max_dirty_pages_pct

	3. 服务器调优案例
	3.1 参数配置调优
	3.2 数据预热

	4. 总结
	5. 问题
	6. 参考资料

