
更新时间：2020-08-17 13:59:43

13 Docker 资源限制的幕后主使：cgroup

上一篇文章介绍了 Docker 中的隔离技术：NameSpace，这篇文章我们看一下 Docker 中的资源限制技术：

CGroups。Linux Cgroups 的全称是 Linux Control Group，简单来说，CGroups 的作用就是限制一个进程组能够

使用的资源上限，CPU，内存等。

1. CGroups 的历史

CGroups 最初由 Google 的工程师 Paul Menage 和 Rohit Seth 发起，当时项目名叫 Process Container 。后来为

了避免 Linux 系统中各种各样的 container 含义引入歧义，改名为 control groups 。

CGroups 的正式面世在 2008 年初，伴随 Linux 的内核版本 2.6.24 的 release 发布，这个是版本 version 1。后来

越来越多的特性开始被加入到 CGroups 中，但是由于设计并不是很好，后面 CGroups 中代码越来越多，越难维

护，甚至出现某些情况下冲突的问题。

虚心使人进步，骄傲使人落后。——毛泽东

file:///read/84/article/2244
file:///read/84/article/2246

为了解决上面 CGroups version 1 的问题，在 Linux Kernel 3.10 版本开始了 version 2 的开发工作，相当于重写了

version 1 的 CGroups。Version 2 版本的 CGroups 在 Linux 4.5 发布中正式面世。

尽管 CGroups v2 旨在替换 CGroups v1，但是考虑到兼容性，目前这两个版本是并存的，而且目前来看官方也没

有移除 CGroups v1 的计划。

目前 CGroups v2 只是实现了 v1 中的 controller 的一个子集。我们可以在同一个系统中同时挂载 CGroups 的 v1 和

v2 版本。

举个例子：我们可以使用 v2 中实现的 controller，同时使用 v2 中没有实现而在 v1 中实现的 controller。需要注意

的是我们不能同时使用在 v1 和 v2 中都实现的 controller。

2. 核心概念

CGroups 中有几个重要概念：

cgroup：通过 CGroups 系统进行限制的一组进程。CGroups 中的资源限制都是以进程组为单位实现的，一个

进程可以加入到某个进程组，从而受到相同的资源限制。

task：在 CGroups 中，task 可以理解为一个进程。

hierarchy：可以理解成层级关系，CGroups 的组织关系就是层级的形式，每个节点都是一个 cgroup。cgroup

可以有多个子节点，子节点默认继承父节点的属性。

subsystem：更准确的表述应该是 resource controllers，也就是资源控制器，比如 cpu 子系统负责控制 cpu

时间的分配。子系统必须应用（attach）到一个 hierarchy 上才能起作用。

其中最核心的是 subsystem，CGroups 目前支持的 subsystem 包括：

cpu：限制进程的 cpu 使用率；

cpuacct：统计 CGroups 中的进程的 cpu 使用情况；

cpuset：为 CGroups 中的进程分配单独的 cpu 节点或者内存节点；

memory：限制进程的内存使用；

devices：可以控制进程能够访问哪些设备；

blkio：限制进程的块设备 IO；

freezer：挂起或者恢复 CGroups 中的进程；

net_cls：标记进程的网络数据包，然后可以使用防火墙或者 tc 模块（traffic controller）控制该数据包。这个

控制器只适用从该 cgroup 离开的网络包，不适用到达该 cgroup 的网络包；

ns：将不同 CGroups 下面的进程应用不同的 namespace；

perf_event：监控 CGroups 中的进程的 perf 事件（注：perf 是 Linux 系统中的性能调优工具）；

pids：限制一个 cgroup 以及它的子节点中可以创建的进程数目；

rdma：限制 cgroup 中可以使用的 RDMA 资源。

通过上面列举出来的 subsystem，我们可以简单的了解到，通过 Linux CGroups 我们可以控制的资源包括：

CPU、内存、网络、IO、文件设备等。

2. 使用演示

CGroups 在使用之前需要挂载一下，正常我们使用的系统都应该挂载了，我们可以通过下面的命令查看一下：

我们可以看到 CGroups 是以文件系统的形式组织起来的，为了文件系统目录 /sys/fs/cgroup/ 目录下，其中每个子

目录对应一个 subsystem ，或者说资源控制器。我们看一下 cpu 和 memory 子目录中的数据。

除了一些和 cpu 和 memory 特有的文件，这两个 subsystem 有一些共同的文件，比如 tasks 就表示这个

subsystem 控制的进程 id 列表。下面我们以 cpu subsystem 为例来演示一下。

从上面的截图我们可以发现，创建完 hello 文件夹之后，系统为我们自动创建了一些 cgroup 相关的文件，比如

cpu.cfs_period_us 和 cpu.cfs_quota_us 表示进程在长度为 cfs_period 的一段时间内只能被分配到总量为

cfs_quota 的 CPU 时间。cpu.cfs_period_us 默认值为 100000，也就是 100000 us；

这个时候我们启动 for 循环的脚本把 cpu 打满。

然后我们通过命令 top -p 2020 查看这个进程的资源使用情况，CPU 确实是被打满了。

下面我们将该进程加入到我们之前建的 hello 那个 cpu cgroup 里面。我们首先将 hello cpu cgroup 的

cpu.cfs_quota_us 改完 50000，相当于 cpu.cfs_period_us 的一半，这样理论上就可以将 cpu 的使用率限制到

50% 了。我们试试。其中第二行将进程 id 写入到 cgroup 的 tasks 文件中。

下面我再使用 top -p 2020 查看进程 2020 的资源使用情况如下，我们可以看到 CPU 使用率在 49.8%，基本等于

一半，符合预期。

3. Docker 使用 CGroup

我们可以在 docker run 命令启动容器的时候指定 cgroup，我们可以通过 help 命令来查看 docker 支持的参数。 比

如支持的 cpu 限制如下。

支持 memory 限制如下。

[root@docker cpu]# while : ; do : ; done &
[1] 2020

top - 17:21:06 up 70 days, 16:59, 1 user, load average: 1.92, 1.13, 1.02
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 43.7 us, 5.0 sy, 0.0 ni, 51.4 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 15992076 total, 574432 free, 3809156 used, 11608488 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 11763044 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 2020 root 20 0 115524 656 168 R 100.0 0.0 0:46.30 bash

[root@docker hello]# echo 50000 > cpu.cfs_quota_us
[root@docker hello]# echo 2020 > tasks

top - 17:26:46 up 70 days, 17:05, 1 user, load average: 1.40, 1.89, 1.44
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 12.9 us, 0.3 sy, 0.0 ni, 86.7 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 15992076 total, 592312 free, 3805440 used, 11594324 buff/cache
KiB Swap: 0 total, 0 free, 0 used. 11766784 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 2020 root 20 0 115524 656 168 R 49.8 0.0 5:42.52 bash

[root@docker ~]# docker run --help | grep cpu
 --cpu-period int Limit CPU CFS (Completely Fair Scheduler) period
 --cpu-quota int Limit CPU CFS (Completely Fair Scheduler) quota
 --cpu-rt-period int Limit CPU real-time period in microseconds
 --cpu-rt-runtime int Limit CPU real-time runtime in microseconds
 -c, --cpu-shares int CPU shares (relative weight)
 --cpus decimal Number of CPUs
 --cpuset-cpus string CPUs in which to allow execution (0-3, 0,1)
 --cpuset-mems string MEMs in which to allow execution (0-3, 0,1)


12 Docker 隔离的本质：
namespace 14 Docker 镜像你真的理解了吗？

前面细心的同学应该已经发现在每个 subsystem 下面都有一个 docker 目录，没错，docker 目录下面就是我们机

器上面运行的 docker 进程。

其中的那一串字符对应就是 container id，我们可以通过 docker ps 查看。

我们进入到其中一个子目录。

还记得我们前面说的 tasks 文件是该 cgroup 包含的进程吧，我们查看一下。

显然 tasks 中的进程 ID 就是 docker 进程对应到宿主机上面的进程 ID。

4. 总结

在这篇文章中，我们先简单了解了一下 CGroups 的历史和特性，然后通过实践为大家演示了如何通过 cgroup 限制

进程的 cpu 使用率。并演示了 cgroup 在 docker 中的体现。

限于篇幅，本篇文章只举例如何通过 cgroup 限制 cpu 使用率，希望大家可以自己动手实践其他的 cgroup 的

subsystem。

}

[root@docker ~]# docker run --help | grep memory
 --kernel-memory bytes Kernel memory limit
 -m, --memory bytes Memory limit
 --memory-reservation bytes Memory soft limit
 --memory-swap bytes Swap limit equal to memory plus swap: '-1' to enable unlimited swap
 --memory-swappiness int Tune container memory swappiness (0 to 100) (default -1)

	1. CGroups 的历史
	2. 核心概念
	2. 使用演示
	3. Docker 使用 CGroup
	4. 总结

