
更新时间：2020-08-19 09:48:31

15 Docker 的本质是进程

前面我们深入剖析了 Docker 的隔离技术 namespace 和资源隔离 cgroup，以及镜像技术，这篇文章我们再来重新

认识一下 Docker 容器。

如果用精简的一句话来描述容器，应该如何来表达？

容器就是进程。

够简单，但是不够准确。

容器是使用 namespace 进行隔离，cgroup 进行资源限制的进程。

还少了镜像。

容器是使用 namespace 进行隔离，cgroup 进行资源限制，并且带有 rootfs 的进程。

读书而不思考，等于吃饭而不消化。——波尔克

file:///read/84/article/2246
file:///read/84/article/2248

这么看上去差不多了。

1. 进程

在 Operating Systems: Three Easy Pieces 这本书对进程的定义如下：

The definition of a process, infor- mally, is quite simple: it is a running program.

这句话有一种比较合适的翻译：进程是程序的运行实例。我们最常见的可执行文件就是程序，不同操作系统平台

上面对应的可执行文件的组织结构不尽相同，比如 Linux 平台上的可执行文件就包含代码段、数据段等。概括

来说，程序是一段操作系统可以识别的指令的集合，其中可能还包含部分数据。

进程作为操作系统提供的抽象概念，它代表了一个运行实体。操作系统就是由一组进程组成，root 进程为 1 号进

程，init 0，或者说 systemd，剩下的所有进程都是 0 号进程的后代。我们可以通过 Linux 提供的 ps 命令来查看当

前系统中运行的进程，如下所示。

从上图我们可以看进程的信息包括：

USER：进程的启动用户；

PID：进程号，每个进程都会被分配一个 PID，是一种系统资源，并且每个系统中的进程号个数是有限的；

%CPU：CPU 使用率；

%MEM：内存使用率；

…

2. 容器

理解容器的本质最简单的方式就是类比。

进程是程序的运行实体；

容器是镜像的运行实体。

镜像和程序的角色是一样的，只不过镜像要比程序更加的丰富。程序只是按简单的格式存储在文件系统中，而镜

像是按层，以联合文件系统的方式存储。

容器和进程的角色也是类似的，只不过容器相比于普通进程多了更多地附加属性。

既然容器也是进程，那么它一定也有进程号，那么如何将容器映射到操作系统的进程呢？我们这里还是以 Docker

容器为例。通过 docker top <container-id> 命令可以看到容器的进程号。下面举个例子。

我们的 http-server 容器对应的操作系统进程号就为 25533 号进程。为了更加直接的感受一下容器是一种进程，我

们可以看一下 /proc/<process-id> 这个目录。在 Linux 中，每个进程的信息都可以通过目录 /proc 下面查找到，进

程号会作为目录的名称。

[root@xxx ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
d3973eb73bec http-server:v1 "/http-server" 35 hours ago Up 35 hours 0.0.0.0:8091->8091/tcp clever_nobel
bf90054c3017 google/cadvisor:latest "/usr/bin/cadvisor -…" 12 days ago Up 12 days 0.0.0.0:8081->8080/tcp cadvisor
246cf9479cdf busybox "sh" 12 days ago Up 12 days ecstatic_shirley
ff4f54614a02 busybox "sh" 12 days ago Up 12 days boring_meitner
9d72cb96129c busybox "sh" 13 days ago Up 13 days priceless_shannon
[root@xxx ~]# docker top d3973eb73bec
UID PID PPID C STIME TTY TIME CMD
root 25533 25514 0 Jun25 ? 00:00:00 /http-server
[root@xxx ~]# ps aux | grep 25533
root 7008 0.0 0.0 112716 964 pts/0 S+ 20:26 0:00 grep --color=auto 25533
root 25533 0.0 0.0 707104 2564 ? Ssl Jun25 0:00 /http-server

[root@xxx proc]# ls
1 10733 13860 18 2227 25514 3041 33 456 542 659 7922 8440 cpuinfo irq modules swaps
10 10773 14 1843 22270 25533 3042 3327 46 543 7 7923 8442 crypto kallsyms mounts sys
1006 1078 14011 19 22288 26 3043 3333 47 57 7274 7941 8443 devices kcore mtrr sysrq-trigger
10148 11 14180 2 22392 260 30526 34 4765 5716 7283 7994 8450 diskstats keys net sysvipc
10173 11247 1502 2068 23 26513 306 3475 4767 5718 75 8 8988 dma key-users pagetypeinfo timer_list
10338 11632 1503 2083 2312 27900 3074 35 49 59 7618 8043 9 driver kmsg partitions timer_stats
1035 12 1505 20890 24 28 3075 36 5163 6 7624 8062 9006 execdomains kpagecount sched_debug tty
10353 12461 15489 20892 24985 28390 30761 3600 517 60 7626 8122 acpi fb kpageflags schedstat uptime
1036 13 16 21 2500 289 31 37 529 61 7730 8205 buddyinfo filesystems loadavg scsi version
1038 1301 17 21249 2520 29 32 3706 531 611 7740 8252 bus fs locks self vmallocinfo
1039 13267 17030 2140 25247 294 32226 38 532 62 7774 8341 cgroups interrupts mdstat slabinfo vmstat
1046 1372 17165 22 2531 30 32676 39 5343 624 7806 8343 cmdline iomem meminfo softirqs zoneinfo
1051 1376 172 22264 25508 301 3277 4 5361 646 7814 8439 consoles ioports misc stat
[root@emr-header-1 proc]# cd 25533
[root@emr-header-1 25533]# ls
attr clear_refs cpuset fd limits mem net oom_score personality schedstat stack syscall wchan
autogroup cmdline cwd fdinfo loginuid mountinfo ns oom_score_adj projid_map sessionid stat task
auxv comm environ gid_map map_files mounts numa_maps pagemap root setgroups statm timers
cgroup coredump_filter exe io maps mountstats oom_adj patch_state sched smaps status uid_map
[root@xxx 25533]# ls -al ns
total 0
dr-x--x--x 2 root root 0 Jun 25 09:40 .
dr-xr-xr-x 9 root root 0 Jun 25 09:40 ..
lrwxrwxrwx 1 root root 0 Jun 26 20:29 ipc -> ipc:[4026532462]
lrwxrwxrwx 1 root root 0 Jun 26 20:29 mnt -> mnt:[4026532460]
lrwxrwxrwx 1 root root 0 Jun 25 09:40 net -> net:[4026532524]
lrwxrwxrwx 1 root root 0 Jun 26 20:29 pid -> pid:[4026532463]
lrwxrwxrwx 1 root root 0 Jun 26 20:29 user -> user:[4026531837]
lrwxrwxrwx 1 root root 0 Jun 26 20:29 uts -> uts:[4026532461]
[root@xxx 25533]# cat cgroup
11:cpuset:/docker/d3973eb73bec5e62bf47710d8607a87ce27973c3dcd653b39eae41da25564d4d
10:hugetlb:/docker/d3973eb73bec5e62bf47710d8607a87ce27973c3dcd653b39eae41da25564d4d
9:perf_event:/docker/d3973eb73bec5e62bf47710d8607a87ce27973c3dcd653b39eae41da25564d4d
8:pids:/docker/d3973eb73bec5e62bf47710d8607a87ce27973c3dcd653b39eae41da25564d4d
7:freezer:/docker/d3973eb73bec5e62bf47710d8607a87ce27973c3dcd653b39eae41da25564d4d
6:memory:/docker/d3973eb73bec5e62bf47710d8607a87ce27973c3dcd653b39eae41da25564d4d
5:net_prio,net_cls:/docker/d3973eb73bec5e62bf47710d8607a87ce27973c3dcd653b39eae41da25564d4d
4:devices:/docker/d3973eb73bec5e62bf47710d8607a87ce27973c3dcd653b39eae41da25564d4d
3:blkio:/docker/d3973eb73bec5e62bf47710d8607a87ce27973c3dcd653b39eae41da25564d4d
2:cpuacct,cpu:/docker/d3973eb73bec5e62bf47710d8607a87ce27973c3dcd653b39eae41da25564d4d
1:name=systemd:/docker/d3973eb73bec5e62bf47710d8607a87ce27973c3dcd653b39eae41da25564d4d

上图显示的就是 http-server 这个容器作为操作系统的进程的一些基本信息，比如 ns 目录就对应 6 个不同的

namespace，而 cgroup 则对应 11 种不同的 cgroup。

3. rootfs

那么容器的 rootfs 又是如何体现的呢？

如果记得之前那篇 namespace 的文章，应该还记得 Mount Namespace。在 Linux 的 manpage 上面是这么定义

Mount Namespace。

Mount namespaces provide isolation of the list of mount points seen by the processes in each namespace

instance. Thus, the processes in each of the mount namespace instances will see distinct single-directory

hierarchies.

简而言之，Mount Namespace 隔离实现处于不同 namespace 中的进程的不同的挂载点视图。Mount

Namespace 的特别之处在于，Mount Namespace 必须要和挂载操作结合使用，进程的视图才会被真正的改

变。否则，容器将直接继承宿主机的各个挂载点。

下面我们看一个小程序：

这是一个 C 语言程序，在第 28 行使用 clone() 系统调用创建了一个新的子进程 container_main，并声明启用

Mount Namespace（即 CLONE_NEWNS）。新的子进程运行之后会启动 /bin/bash 。

#define _GNU_SOURCE
#include <sys/mount.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <stdio.h>
#include <sched.h>
#include <signal.h>
#include <unistd.h>
#define STACK_SIZE (1024 * 1024)
static char container_stack[STACK_SIZE];
char* const container_args[] = {
 "/bin/bash",
 NULL
};

int container_main(void* arg)
{
 printf("Container - inside the container!\n");
 execv(container_args[0], container_args);
 printf("Something's wrong!\n");
 return 1;
}

int main()
{
 printf("Parent - start a container!\n");
 int container_pid = clone(container_main, container_stack+STACK_SIZE, CLONE_NEWNS | SIGCHLD , NULL);
 waitpid(container_pid, NULL, 0);
 printf("Parent - container stopped!\n");
 return 0;
}

 14 Docker 镜像你真的理解了吗？ 
16 镜像构建指南：Dockerfile 详

解

但是这个时候我们编译执行之后进入子进程执行 ls 发现还是宿主机的视图。这就是因为我们只是启用了 Mount

Namespace 但是并没有做挂载这个动作导致的。我们对子进程 container_main 做如下修改。

其中第 7 行代码就是挂载的动作，将目录 /tmp 以 tmpfs 也就是内存文件系统的格式进行挂载。这个时候重新编译

运行会发现目录 /tmp 下面是空的，也就是表示我们的试验成功了。

我们正常启动容器之后会发现整个根目录都发生了变化，其实就相当于重新挂载了根目录。在 Linux 操作系统中，

有一个系统调用叫 chroot 就是用来改变根目录挂载的。

为了能够让容器的根目录看起来更像一个操作系统，一般会在容器的根目录下挂载一个完整的操作系统的文件，这

也是我们在容器中通过命令 ls / 看到的样子。这个挂载在容器根目录上，用来为容器进程提供隔离（比如文件中包

含一下依赖包）后执行环境的文件系统，就是文件镜像，或者说 rootfs。

4. 总结

很多人学习 Docker 过程中，长时间纠结于各种细枝末节而无法自拔。而一旦抓住 容器是一种特殊的进程 这一本

质，一切都将变得明朗起来。

}

int container_main(void* arg)
{
 printf("Container - inside the container!\n");
 // 如果你的机器的根目录的挂载类型是shared，那必须先重新挂载根目录
 // mount("", "/", NULL, MS_PRIVATE, "");
 mount("none", "/tmp", "tmpfs", 0, "");
 execv(container_args[0], container_args);
 printf("Something's wrong!\n");
 return 1;
}

	1. 进程
	2. 容器
	3. rootfs
	4. 总结

