
更新时间：2020-08-26 09:57:10

18 Docker 网络模式

Docker 网络模式

在上一篇文章我们介绍了 Docker 网络的工作模式，包括 docker0 网桥和 iptables 等。其中 docker0 网桥是

Docker 默认网络模式，也就是 bridge 模式。

1. 概览

Docker 现在的网络模块是插件式的，只要按既定协议实现就可以使用。Docker 默认实现了五种网络模式如下（现

在网络上面可以搜索到的文章都说 Docker 支持四种网络模式，其实是不准确的），我们可以在 Docker run 的时

候通过参数 --net 指定。

bridge 模式

Docker 的默认网络模式。这种模式会将创建出来的所有 Docker 容器链接到 docker0 网桥或者自定义网桥上，所

有的 Docker 容器处于同一个子网。

host 模式

顾名思义，这种模式下，Docker 容器和宿主机使用同一个网络协议栈，也就是同一个 network namespace，和宿

主机共享网卡、IP、端口等信息。好处是性能更好，缺点也很明显，没有做网络隔离。

机会不会上门来找人，只有人去找机会。——狄更斯

file:///read/84/article/2249
file:///read/84/article/2251

overlay 模式

这种模式在多个 Docker daemon 主机之间创建一个分布式网络，该网络位于 Docker 主机层次之上，允许容器之间

加密通讯，需要处理容器之间和主机之间的网络包。

macvlan 模式

macvlan 是 Linux 的一个内核模块，算是一个比较新的特性。本质上是一种网卡虚拟化技术，通过 macvlan 可以在

同一个物理网卡上虚拟出多个网卡，通过不同的 Mac 地址在数据链路层进行网络数据的转发，一块网卡上配置多

个 Mac 地址。Docker 的 macvlan 网络实际上就是使用 Linux 提供的 macvlan 驱动。

none 模式

这种模式下 Docker 容器拥有自己的 network namespace，但是并不会做任何网络配置。换句话说，这个 Docker

容器除了 network namespace 自带的 lo 网卡（loopback，127.0.0.1）外没有其他任何网卡、IP 等信息。这种模式

如果不做额外配置是无法使用的，要使用需要自己添加网卡等，也就是它给了用户最大的自由度。

network plugins

除了上面默认实现的五种网络模式，你还可以使用第三方的网络插件。这部分需要较多篇幅，本篇文章暂时不介绍

了。感兴趣的同学可以参考这篇文章。

2. Bridge 模式

虽然上一篇文章已经基于 bridge 模式做了分析，这里还是简单介绍一下 bridge 模式下，Docker 初始化容器网络的

步骤：

创建一对虚拟网卡（veth pair）。

赋予其中一块网卡类似 “vethxxx” 的名字，将其绑定到 docker0 或者自定义网桥，用来连接宿主机的 network

namespace。

将 veth pair 的另一块网卡放入新创建的 Docker 容器的 network namespace 中，命名为 eth0。

从网桥的子网中选取一个未使用的 IP 分配给 eth0，并为 Docker 容器网络设置路由和网格。

Docker 会自动创建 docker0 网桥，使用 bridge 模式的 Docker 容器默认使用 docker0 网桥，除此之外，你也可以

使用自定义网桥（User-defined bridge network）。自定义网桥和默认 docker0 网桥的区别在于：

自定义网桥提供容器间的自定义 DNS 解析。默认网桥网络下的 Docker 容器只能通过 IP 地址交互，除非使用

--link 参数将多个 Docker 容器连接起来。

自定义网桥具有更好的隔离性。默认创建的 Docker 容器如果没有指定 --network 参数，都会连接到默认的

docker0 网桥上，这样相当于将所有不不相干的容器都置于一个同一个网络环境中，可能存在风险。自定义网

桥相当于将 docker0 网桥按我们需要分隔成多个自定义网桥，毫无疑问，这样隔离性更好。

容器可以在运行时和自定义网桥进行绑定或者解绑。这个默认 docker0 网桥是不行的，需要停止容器。

每个自定义网桥可以自定义自己的配置，比如 MTU 和 iptables 规则等。但是如果使用默认 docker0 网桥，相

当于共享配置。

通过默认网桥 Link 的 Docker 容器可以共享环境变量。所谓 Link 是指 docker run 的时候指定 --link 参数。这

个在自定义网桥中是不行的，但是可以通过其他方式来实现，比如：

将需要共享的数据放到 volume 中，多个 Docker 容器自行 mount。

使用 docker-compose 启动多个 Docker 容器，将共享变量定义到 compose 文件中。

https://docs.docker.com/engine/extend/plugins_network/

3. Host 模式

Host 模式可以通过参数 --network host 指定，比如我们使用 host 模式启动一个 nginx 容器。

Nginx 进程会使用 80 端口，那么我们看一下刚才启动 nginx 容器有没有占用宿主机的 80 端口。首先我们要获取到

容器对应的宿主机上面的进程 pid，使用命令 docker top 命令。

上面的输出表示 nginx 的 Docker 容器启动了两个进程 nginx master 和 nginx worker，分别对应到宿主机的 28480

和 28506 号进程。然后我们通过 netstat 命令查看 nginx master 进程有没有占用宿主机的 80 端口。答案很明显是

的。

Host 模式的优缺点都很明显。

缺点：没有和宿主机的 network namespace 进行隔离。可能会存在端口冲突的情况，比如 nginx 镜像的

Docker 容器会使用 80 端口，那么我们就不能以 host 模式启动两个容器，不然会冲突。

优点：共用同一个 network namespace 也就意味没有个多个 network namespace 之间的数据转发，性能更

好。

4. none 模式

None 模式就是禁止 Docker 容器的网络，没啥可以多说的，我们还是以一个实际的例子来好了。

我们首先通过 --network none 参数启动一个 none 模式的 busybox 容器，然后在容器中通过 ifconfig 查看发现只有

一个 loopback 网卡，这也就意味这个 Docker 容器是不可访问的，也就是 none 模式的含义。

5. overlay && macvlan

Overlay 和 Macvlan 模式我们这里就不做过多介绍了，Overlay 模式网络我们后面在 Kubernetes 网络相关内容再介

绍，毕竟现在的跨主机的 Docker 容器部署基本都是通过 Kubernetes 来部署的。

[root@docker ~]# docker run --rm -d --network host --name host_nginx nginx
38a4b19971e5f503dc902ba070d4dec270f0737197e574f50eb9dff253c56129

[root@docker ~]# docker ps | grep host_nginx
38a4b19971e5 nginx "nginx -g 'daemon of…" 3 minutes ago Up 3 minutes host_nginx
[root@docker ~]# docker top 38a4b19971e5
UID PID PPID C STIME TTY TIME CMD
root 28480 28460 0 20:29 ? 00:00:00 nginx: master process nginx -g daemon off;
101 28506 28480 0 20:29 ? 00:00:00 nginx: worker process

[root@docker ~]# netstat -anlp | grep 28480
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 28480/nginx: master

[root@docker ~]# docker run --rm -ti --network none --name none-net-busybox busybox:latest sh
/ # ifconfig
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

 17 Docker 网络初探 
19 容器间网络通信：link 的技术

原理解析

Macvlan 相当于是处理 VM 迁移到 Docker 容器的历史遗留问题使用的方式，大部分人应该都应用不到，这里不做

过多介绍。感兴趣的同学可以参考这里。

6. 最佳实践

官方给了一个针对各个网络模式的选择使用建议：

User-defined bridge network 适用于同一个宿主机上多个 Docker 容器进行通信。这里的 user-defined 可以

理解为自定义网桥，不适用 docker0 网桥，这样可以更灵活地设置子网和 iptables。

Host networks 适用于 Docker 容器的网络不需要和宿主机进行隔离的场景，比如对于网络性能比较敏感的场

景。

Overlay networks 适用于运行在多个宿主机上 Docker 容器之间的通信情况。

Macvlan networks 适用于 VM 迁移的场景，这样每个 Docker 容器看起来和物理主机一样。

Third-party network plugins 适用于将 Docker 和特定网络协议栈整合的场景。

7. 总结

本篇文章介绍了 Docker 支持的集中网络模式，并重点介绍了最常用的 bridge 和 host 模式。由于篇幅有

限，macvlan 和 第三方的 network plugin 没有做介绍，感兴趣的同学可以自行查阅。

}

https://docs.docker.com/network/macvlan/

	Docker 网络模式
	1. 概览
	bridge 模式
	host 模式
	overlay 模式
	macvlan 模式
	none 模式
	network plugins

	2. Bridge 模式
	3. Host 模式
	4. none 模式
	5. overlay && macvlan
	6. 最佳实践
	7. 总结

