
更新时间：2020-10-19 09:54:02

35 容器化守护进程 DaemonSet

在 Linux 系统中，有一种进程叫守护进程，英文是 daemon，这是一类在后台运行的特殊进程，用户执行特殊的系

统任务。比如我们在 Linux 系统中，很多以 d 结尾的进程都是守护进程。

在 Kubernetes 中的 DaemonSet 严格意义上来说和守护进程关系其实不大。DaemonSet 的主要作用是用来控制

Daemon Pod。那么什么是 Daemon Pod 呢？Daemon Pod 具有如下一些特性：

这个 Pod 运行在 Kubernetes 集群中的每一个节点（Node）上；

每个节点上只能运行一个 Deamon Pod 实例；

当有新的节点（Node）加入到 Kubernetes 集群时，Daemon Pod 会被自动拉起；

当有旧节点被删除时，其上运行的 Daemon Pod 也将被删除。

DaemonSet 的典型应用场景如下：

在集群每个节点上启动一个存储守护进程，比如 glusted 或者 ceph；

在每个节点上启动一个日志收集进程，比如 fluentd 或者 filebeat；

在集群的每个节点上面启动监控的守护进程，比如 Prometheus 的 node-exporter。

1. 创建 DaemonSet

能够生存下来的物种,并不是那些最强壮的,也不是那些最聪明的,而是那些对变化作出快速反应的。——达尔文

file:///read/84/article/2407
file:///read/84/article/2412

我们可以创建一个描述 DaemonSet 的 yaml 文件，下面是一个简单的例子。

简单介绍一下其中的重要部分：

kind：指定 DaemonSet；

.spec.template ：是 Pod 模板，对应的 DaemonSet 启动的 Pod 的信息描述；

.spec.selector：用来和 Pod 匹配的 selector，需要和 .spec.template 中描诉的 Pod 的 label 匹配上。从

Kubernetes 1.8 版本之后，这个字段必须指定。 .spec.selector 支持两种：

matchLabels ：和 Pod 的 label 进行匹配。

matchExpression ：更加灵活的匹配，支持集合匹配，Operator 包括 In 和 NotIn。下面是一个简单的

matchExpression 示例，表示：

2. 使用 DaemonSet

同样的，我们可以通过 kubectl apply 创建 DaemonSet。

apply 成功之后，我们可以查看一下集群中的 Pod，如下，因为我们集群只有三个 worker 节点，所以一共有三个

Pod。

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: fluentd-app
 labels:
 k8s-app: fluentd
spec:
 selector:
 matchLabels:
 name: fluentd-app
 template:
 metadata:
 labels:
 name: fluentd-app
 spec:
 containers:
 - name: fluentd
 image: fluentd:v2.5.2
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi

- matchExpressions:
 - key: kubernetes.io/e2e-az-name
 operator: In
 values:
 - e2e-az1
 - e2e-az2

$ kubectl apply -f fluentd.yaml -n imooc
daemonset.apps/fluentd-app configured

我们再来看一下集群中 DaemonSet 对象。

从 DaemonSet 对象的简略描述信息中可以看到该 DaemonSet 控制的 Pod 的状态：

DESIRED：期望运行的 Pod 实例的个数；

CURRENT：当前运行的 Pod 实例的个数；

READY：状态 ready 的 Pod 实例的个数；

…

我们再通过 kubectl describe ds 查看一下 DaemonSet 的明细信息，没错，这里的 ds 是 DaemonSet 的缩写。

从这个输出里面我们可以看到几点信息：

DaemonSet 的基本信息，包括名字，label 等；

$ kubectl get po -n imooc
NAME READY STATUS RESTARTS AGE
fluentd-app-6ml24 0/1 ContainerCreating 0 8s
fluentd-app-6sxz9 0/1 ContainerCreating 0 8s
fluentd-app-fknkb 0/1 ContainerCreating 0 8s

$ kubectl get daemonset -n imooc
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
fluentd-app 3 3 3 3 3 <none> 4m26s

$ kubectl describe ds fluentd-app -n imooc
Name: fluentd-app
Selector: name=fluentd-app
Node-Selector: <none>
Labels: k8s-app=fluentd
Annotations: deprecated.daemonset.template.generation: 2
 kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"apps/v1","kind":"DaemonSet","metadata":{"annotations":{},"labels":{"k8s-app":"fluentd"},"name":"fluentd-app","namespace":"i...
Desired Number of Nodes Scheduled: 3
Current Number of Nodes Scheduled: 3
Number of Nodes Scheduled with Up-to-date Pods: 3
Number of Nodes Scheduled with Available Pods: 3
Number of Nodes Misscheduled: 0
Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: name=fluentd-app
 Containers:
 fluentd:
 Image: fluentd
 Port: <none>
 Host Port: <none>
 Limits:
 cpu: 100m
 memory: 200Mi
 Requests:
 cpu: 100m
 memory: 200Mi
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 6m24s daemonset-controller Created pod: fluentd-app-6sxz9
 Normal SuccessfulCreate 6m24s daemonset-controller Created pod: fluentd-app-6ml24
 Normal SuccessfulCreate 6m24s daemonset-controller Created pod: fluentd-app-fknkb

Pod 的调度情况；

Pod 模板，也就是 Pod Template；

Events：主要包括创建 pod 的事件；

下面我们看一下 DaemonSet 的自动拉起功能的特性。

为了展示自动拉起，很简单，我们只要删除 DaemonSet 之前拉起的 Pod，然后观察有没有新的 Pod 创建出来即

可。

如上所示，在老的 Pod fluentd-app-6ml24 被删除之后，新的 Pod fluentd-app-2xjmg 立刻就被创建出来了。

DaemonSet 在新创建的 Kubernetes 的 Node 节点上自动创建的特性，这里就不再展示了。

虽然 DaemonSet 默认会在所有的节点上启动相同的 Pod，但是有时候我们还是希望只在某些指定的节点上面运行

Pod。对于这个问题有两种解决方案：

指定 .spec.template.spec.nodeSelector ，DaemonSet 将在能够与 Node Selector 匹配的节点上创建 Pod。

指定 .spec.template.spec.affinity ，然后 DaemonSet 将在能够与 nodeAffinity 匹配的节点上创建 Pod。

nodeSelector 示例

我们首先给某个节点打上特定的 label，使用命令 kubectl labels 。

然后在 DaemonSet 的 yaml 文件中指定 nodeSelector。

$ kubectl get pods -n imooc
NAME READY STATUS RESTARTS AGE
fluentd-app-6ml24 1/1 Running 0 35m
fluentd-app-6sxz9 1/1 Running 0 35m
fluentd-app-fknkb 1/1 Running 0 35m
nginx-deployment-57f49c59d-8dzn4 1/1 Running 0 20h
nginx-deployment-57f49c59d-9jvrp 1/1 Running 0 20h
nginx-deployment-57f49c59d-m57sr 1/1 Running 0 20h
$ kubectl delete pods fluentd-app-6ml24 -n imooc
pod "fluentd-app-6ml24" deleted
$ kubectl get pods -n imooc
NAME READY STATUS RESTARTS AGE
fluentd-app-2xjmg 1/1 Running 0 12s
fluentd-app-6sxz9 1/1 Running 0 36m
fluentd-app-fknkb 1/1 Running 0 36m
nginx-deployment-57f49c59d-8dzn4 1/1 Running 0 20h
nginx-deployment-57f49c59d-9jvrp 1/1 Running 0 20h
nginx-deployment-57f49c59d-m57sr 1/1 Running 0 20h

$ kubectl label nodes <node-name> <label_key>=<value>

nodeAffinity 示例

nodeAffinity 目前支持 4 种策略，分别是：

requiredDuringSchedulingIgnoredDuringExecution：表示 Pod 必须部署到满足条件的节点上，如果没有满足条

件的节点，就不停重试。

requiredDuringSchedulingRequiredDuringExecution：类似 requiredDuringSchedulingIgnoredDuringExecution，

不过如果节点标签发生了变化，不再满足pod指定的条件，则重新选择符合要求的节点。

preferredDuringSchedulingIgnoredDuringExecution：表示优先部署到满足条件的节点上，如果没有满足条件的

节点，就忽略这些条件，按照正常逻辑部署。

preferredDuringSchedulingIgnoredDuringExecution：表示优先部署到满足条件的节点上，如果没有满足条件的

节点，就忽略这些条件，按照正常逻辑部署。其中RequiredDuringExecution表示如果后面节点标签发生了变

化，满足了条件，则重新调度到满足条件的节点。

下面我们以 requiredDuringSchedulingIgnoredDuringExecution 举例，看一下 DaemonSet 的一个示例 yaml。

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: fluentd-app
 labels:
 k8s-app: fluentd
spec:
 selector:
 matchLabels:
 name: fluentd-app
 template:
 metadata:
 labels:
 name: fluentd-app
 spec:
 nodeSelector:
 <key>: <value>
 containers:
 - name: fluentd
 image: fluentd:v2.5.2
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi

3. 更新 DaemonSet

如果 Node 节点的 label 发生改变，DaemonSet 会立刻根据节点的新 label 来做选择并调度 Pod，对于满足标签选

择器的节点会将 Pod 调度上去，对于不满足标签选择器的节点则会删除上面的 Pod。

删除 DaemonSet 的时候，如果选择了参数 --cascade=false 则会保留之前 DaemonSet 创建出来的 Pod。然后可

以创建具有不同模板的新 DaemonSet。具有不同模板的新 DaemonSet 将能够通过标签匹配并识别所有已经存在的

Pod。 如果有任何 Pod 需要替换，则 DaemonSet 根据它的 updateStrategy 来替换。

4. DaemonSet 工作原理

DaemonSet 的工作原理核心问题是要弄懂如何保证每个 Node 上有且只有一个被管理的 Pod。

这个好解决，我们只要拿到 Node 列表，然后检查每个 Node 节点上是不是运行指定的 label 的 Pod 就行了。而这

正好是 DaemonSet Controller 做的事情，关于 Kubernetes 的控制器我们前面有介绍过，控制器会不断的检查状态

是不是预期的，如果不是预期的就做一些处理。对于 DaemonSet Controller 这里遍历所有的 Node，然后状态会有

如下几种情况：

没有指定 label 的 Pod 在运行，则需要在这个 Node 节点上创建一个这样的 Pod；

有指定 label 的 Pod 在运行，但是数量不是 1 个，可能是 2 个或者 3 个，则需要将多余的 Pod 删除；

正好有一个指定 label 的 Pod 在运行，这个是预期的行为，不做处理。

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: fluentd-app
 labels:
 k8s-app: fluentd
spec:
 selector:
 matchLabels:
 name: fluentd-app
 template:
 metadata:
 labels:
 name: fluentd-app
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: <label-name>
 operator: In
 values:
 - <value1>
 - <value2>
 containers:
 - name: fluentd
 image: fluentd:v2.5.2
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi


34 配置管理：ConfigMap 和
Secret 

36 Kubernetes
ReplicationController 和

ReplicaSet 介绍

那么如何在新创建出来的 Node 创建新的 Pod 呢？或者说怎么将 Pod 调度到指定 Node 上呢？还记得我们之前

Pod 使用那章介绍的亲和性吗？是的，没错，这里使用的就是亲和性调度。

亲和性调度里面有一个是 nodeAffinity，就是用来将 Pod 调度到指定的 Node 节点上的。下面是一个简单的例子。

关于这个例子有几点需要说明的是：

requiredDuringSchedulingIgnoredDuringExecution：每次调度的时候才考虑这个亲和性条件，如果之后 Node

节点的信息发生变更，并不会影响之前运行的 Pod。

nodeSelectorTerms：具体的筛选条件，我们这里使用的 matchExpression，通过 node name 来进行比对选

择。

看到这里，我们应该明白了，DaemonSet 的控制器在新的 Node 几点上创建 Pod 的时候，只需要加上类似这样一

个 nodeAffinity 定义，然后在 select 选项里面通过新 Node 节点的名字进行匹配即可。

}

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node-name
 operator: In
 values:
 - <new node name>

	1. 创建 DaemonSet
	2. 使用 DaemonSet
	nodeSelector 示例
	nodeAffinity 示例

	3. 更新 DaemonSet
	4. DaemonSet 工作原理

