
更新时间：2020-10-21 09:41:04

37 Kubernetes Deployment 使用

在上一篇文章介绍完 ReplicationController 和 ReplicaSet 之后，我们这一篇文章来介绍一下目前用来替代这两种控

制的 Deployment。

1. 使用场景

目前的 Deployment 的典型使用场景和 ReplicaSet 类似，都是 Pod 的一种多副本控制器，但是相比于

ReplicaSet，Deployment 在一些更新和扩缩容操作上面更加友好，所以现在基本不再直接使用 ReplicaSet，而是使

用 Deployment 来代替，下面介绍一些 Deployment 的典型使用场景。

2. 创建 Deployment 对象

创建 Deployment 对象，我们需要编写一个 Deployment 的描述文件：

合理安排时间，就等于节约时间。——培根

file:///read/84/article/2412
file:///read/84/article/2418

如果对上一篇介绍 ReplicaSet 的文章还有印象的话，可以发现 Deployment 的声明和 ReplicaSet 非常的相似。这

个 Deployment 描述会创建一个名字叫 nginx-deployment 拥有三个 Pod 副本的 Deployment。

这里的标签选择器这里使用的是简单的 kv 选择器 matchLabels，实际上 Deployment 的标签选择器也是支持

matchExpressions 形式的。下面是是 matchExpressions 的举例。

下面我们通过 kubectl apply 创建这个 Deployment，我们这里是应用到 imooc 这个 namespace。

然后可以通过 kubectl get deployment 检查 Deployment 的创建情况。

通过 kubectl describe deployment 查看 Deployment 的情况。

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi

- matchExpressions:
 - key: kubernetes.io/e2e-az-name
 operator: In
 values:
 - e2e-az1
 - e2e-az2

$ kubectl apply -f nginx-dm.yaml -n imooc

$ kubectl get deployment -n imooc
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-deployment 3/3 3 3 2m31s

通过上面的输出我们可以看到如下几个重要信息。

基本信息：包括 Name，Namespace，CreationTimestamp，Labels 等信息；

selector：标签选择器；；

Replicas：Pod 副本的运行情况；

StrategyType：表示升级的时候如何使用新的 Pod 替换旧的 Pod。这里的值是 RollingUpdate，也就是滚动更

新；除了 RollingUpdate，还支持 Recreate，表示在新建 Pod 之前将老的 Pod 都删除。Deployment 默认使用

RollingUpdate StrategeType；

RollingUpdateStrategy：对于使用 RollingUpdate StrategyType 的情况，我们可以指定 maxUnavailable 和

maxSurge 来控制滚动更新操作：

maxUnavailable：表示在更新过程中最大不可用的 Pod 数，可以为绝对值也可以是百分比，默认值为

25%；

maxSurge：表示能够额外创建的副本数。当 maxSurge 为 0 时，maxUnavailble 不能为 0，因为这两个同

时为 0 的话就死锁了。maxSurge 取值也可以是百分比或者绝对值，默认值是 25%；

Pod Template：定义了该 Deployment 管理的 Pod；

$ kubectl describe deployment nginx-deployment -n imooc
Name: nginx-deployment
Namespace: imooc
CreationTimestamp: Sun, 12 Apr 2020 11:43:04 +0800
Labels: app=nginx
Annotations: deployment.kubernetes.io/revision: 1
 kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"apps/v1","kind":"Deployment","metadata":{"annotations":{},"labels":{"app":"nginx"},"name":"nginx-deployment","namespace
":"i...
Selector: app=nginx
Replicas: 3 desired | 3 updated | 3 total | 3 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: app=nginx
 Containers:
 nginx:
 Image: nginx:1.14.2
 Port: 80/TCP
 Host Port: 0/TCP
 Limits:
 cpu: 100m
 memory: 200Mi
 Requests:
 cpu: 100m
 memory: 200Mi
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: nginx-deployment-64969b6699 (3/3 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 4m8s deployment-controller Scaled up replica set nginx-deployment-64969b6699 to 3

oldReplicaSets/NewReplicaSet：这个是什么情况呢？从 old 和 new 我们可以推测一下有可能 Deployment 每

次更新都是更新 ReplicaSet，然后 ReplicaSet 是通过 Deployment 来进行管理。实际上确实是这样

的，ReplicaSet 作为 Pod 的多副本控制器，很少会直接使用，而是通过 Deployment 来间接管理 ReplicaSet。

Deployment 相比 ReplicaSet 在 Pod 的更新，扩缩容上支持的更好；

Events：我们可以看到该 Deployment 创建了一个 ReplicaSet nginx-deployment-64969b6699，下面我们通过

命令 kubectl get rs 来看一下：

这个 ReplicaSet 的名字正是上面 Deployment 的描述 event 所显示的。我们通过 kubectl describe rs 看一下该

ReplicaSet 的描述。

上面的输出的第 10 行显示的 Controlled By 正是我们所创建的 Deployment。如果是直接创建的 ReplicaSet 是没有

这个 Contorlled By 字段域的。

我们下面通过 kubectl get pods 来查看一下该 Deployment 间接创建出来的 Pod。

可以看出来 pod 的名字是 ReplicaSet 的名字加一个随机的字符串。我们使用 kubectl describe pod 来查看一下。

$ kubectl get rs -n imooc
NAME DESIRED CURRENT READY AGE
nginx-deployment-64969b6699 3 3 3 144m

$ kubectl describe rs nginx-deployment-64969b6699 -n imooc
Name: nginx-deployment-64969b6699
Namespace: imooc
Selector: app=nginx,pod-template-hash=64969b6699
Labels: app=nginx
 pod-template-hash=64969b6699
Annotations: deployment.kubernetes.io/desired-replicas: 3
 deployment.kubernetes.io/max-replicas: 4
 deployment.kubernetes.io/revision: 1
Controlled By: Deployment/nginx-deployment
Replicas: 3 current / 3 desired
Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=nginx
 pod-template-hash=64969b6699
 Containers:
 nginx:
 Image: nginx:1.14.2
 Port: 80/TCP
 Host Port: 0/TCP
 Limits:
 cpu: 100m
 memory: 200Mi
 Requests:
 cpu: 100m
 memory: 200Mi
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Events: <none>

� deployment kubectl get pods -n imooc
NAME READY STATUS RESTARTS AGE
nginx-deployment-64969b6699-6rjgj 1/1 Running 0 148m
nginx-deployment-64969b6699-gw5fx 1/1 Running 0 148m
nginx-deployment-64969b6699-jqvqh 1/1 Running 0 148m

上面的输出的第 13 行也可以看到一个 Controlled By 字段域，显示为我们上面看到的 ReplicaSet。

所以这里我们得出一个结论，Deployment 创建的过程会首先创建一个 ReplicaSet，然后由 ReplicaSet 间接创建

Pod。Deployment 负责管理 ReplicaSet，ReplicaSet 负责管理 Pod。

但是上面 Deployment 描述中的 oldReplicaSet 和 NewReplicaSet 的问题还没有得到解决，我们有理由猜测

Deployment 每次更新都会将老的 ReplicaSet 进行删除，并新建 ReplicaSet。我们下面来看看 Deployment 的更

新。

3. Deployment 的更新

$ kubectl describe pod nginx-deployment-64969b6699-6rjgj -n imooc
Name: nginx-deployment-64969b6699-6rjgj
Namespace: imooc
Priority: 0
Node: cn-beijing.172.16.60.188/172.16.60.188
Start Time: Sun, 12 Apr 2020 11:43:05 +0800
Labels: app=nginx
 pod-template-hash=64969b6699
Annotations: <none>
Status: Running
IP: 10.1.1.142
IPs: <none>
Controlled By: ReplicaSet/nginx-deployment-64969b6699
Containers:
 nginx:
 Container ID: docker://4f1003385c63d073e59b64b236d210a74b0434a892138df403ee34b75e2ad259
 Image: nginx:1.14.2
 Image ID: docker-pullable://nginx@sha256:f7988fb6c02e0ce69257d9bd9cf37ae20a60f1df7563c3a2a6abe24160306b8d
 Port: 80/TCP
 Host Port: 0/TCP
 State: Running
 Started: Sun, 12 Apr 2020 11:43:07 +0800
 Ready: True
 Restart Count: 0
 Limits:
 cpu: 100m
 memory: 200Mi
 Requests:
 cpu: 100m
 memory: 200Mi
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-84db9 (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 default-token-84db9:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-84db9
 Optional: false
QoS Class: Guaranteed
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
Events: <none>

Deployment 的更新支持多种方式的更新，比如通过命令行，或者修改 yaml 文件。我们这里演示一下修改 yaml 文

件的形式，这种形式是一种类似声明式 API 的方式，不管是创建（create）还是更新（update），都只需要修改同

一个 yaml 文件，然后调用 kubectl apply 即可。

比如我们将上面 yaml 中的 replicas: 3 改为 replicas: 4，然后再调用 kubectl apply 我们就会发现 Pod 变成了 4

个。

这种形式的更新只需要将原 ReplicaSet 管理的 Pod 增加一个即可，并不会涉及到 ReplicaSet 的变动。我们下面看

一个涉及到 ReplicaSet 变动的例子，修改 Pod Template 中的镜像的版本，将 nginx 的版本改为 1.9.1 版本

使用 kubectl apply 将变更应用一下。

如果你的手速够快，可以通过 kubectl rollout status 查看这个变更过程，幸运的话会看到类似下面的输出。

但是很多情况下还没有来得及查看就已经变更完成了。

$ kubectl apply -f nginx-dm.yaml -n imooc
deployment.apps/nginx-deployment configured
$ kubectl get pods -n imooc
NAME READY STATUS RESTARTS AGE
nginx-deployment-64969b6699-6rjgj 1/1 Running 0 166m
nginx-deployment-64969b6699-gw5fx 1/1 Running 0 166m
nginx-deployment-64969b6699-jqvqh 1/1 Running 0 166m
nginx-deployment-64969b6699-xnfkz 1/1 Running 0 5m21s

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 4
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.9.1
 ports:
 - containerPort: 80
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi

$ kubectl apply -f nginx-dm.yaml -n imooc
deployment.apps/nginx-deployment configured

$ kubectl rollout status deployment nginx-deployment
Waiting for rollout to finish: 1 out of 2 new replicas have been updated...

再回到我们之前说的那个 OldReplicaSet 和 NewReplicaSet 的问题，通过 kubectl describe 查看一下 Deployment

的描述信息。

通过输出我们可以看到 Deployment 的描诉信息里面的 OldReplicaSets 显示的确实是老的 ReplicaSet 对象，而

NewReplicaSet 显示的为新的 ReplicaSet 对象。（注：一旦切换完成，OldReplicaSets 就会显示为 <none>，所以

有时候虽然发生了变更，但是 OldReplicaSet 显示还是空也是没有问题的）

$ kubectl rollout status deployment nginx-deployment
deployment "nginx-deployment" successfully rolled out

$ kubectl describe deployment nginx-deployment -n imooc
Name: nginx-deployment
Namespace: imooc
CreationTimestamp: Sun, 12 Apr 2020 11:43:04 +0800
Labels: app=nginx
Annotations: deployment.kubernetes.io/revision: 2
 kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"apps/v1","kind":"Deployment","metadata":{"annotations":{},"labels":{"app":"nginx"},"name":"nginx-deployment","namespace
":"i...
Selector: app=nginx
Replicas: 4 desired | 4 updated | 4 total | 4 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
 Labels: app=nginx
 Containers:
 nginx:
 Image: nginx:1.9.1
 Port: 80/TCP
 Host Port: 0/TCP
 Limits:
 cpu: 100m
 memory: 200Mi
 Requests:
 cpu: 100m
 memory: 200Mi
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Conditions:
 Type Status Reason
 ---- ------ ------
 Available True MinimumReplicasAvailable
 Progressing True NewReplicaSetAvailable
OldReplicaSets: nginx-deployment-64969b6699 (4/4 replicas created)
NewReplicaSet: nginx-deployment-c464767dd (4/4 replicas created)
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal ScalingReplicaSet 24m deployment-controller Scaled up replica set nginx-deployment-64969b6699 to 4
 Normal ScalingReplicaSet 6m50s deployment-controller Scaled up replica set nginx-deployment-c464767dd to 1
 Normal ScalingReplicaSet 6m50s deployment-controller Scaled down replica set nginx-deployment-64969b6699 to 3
 Normal ScalingReplicaSet 6m50s deployment-controller Scaled up replica set nginx-deployment-c464767dd to 2
 Normal ScalingReplicaSet 6m37s deployment-controller Scaled down replica set nginx-deployment-64969b6699 to 2
 Normal ScalingReplicaSet 6m37s deployment-controller Scaled up replica set nginx-deployment-c464767dd to 3
 Normal ScalingReplicaSet 6m37s deployment-controller Scaled down replica set nginx-deployment-64969b6699 to 1
 Normal ScalingReplicaSet 6m37s deployment-controller Scaled up replica set nginx-deployment-c464767dd to 4
 Normal ScalingReplicaSet 6m35s deployment-controller Scaled down replica set nginx-deployment-64969b6699 to 0

我们从 Deployment 的 Events 里面（41 行开始）来看一下变更的具体过程是如何发生的，需要注意的时，此时

maxUnavailable 和 maxSurge 都是 25%，也就是容许最多有 4 * 25% = 1 个 Pod 处于不可用状态，容器最多额外

创建出来 1 个 Pod。

1. 新 ReplicaSet nginx-deployment-c464767dd 做扩容新建出 1 个 Pod；

2. 老 ReplicaSet nginx-deployment-64969b6699 做缩容，从 4 个 Pod 缩至 3 个 Pod；

3. 新 ReplicaSet nginx-deployment-c464767dd 做扩容新建出 2 个 Pod；

4. 老 ReplicaSet nginx-deployment-64969b6699 做缩容，从 3 个 Pod 缩至 2 个 Pod；

5. 新 ReplicaSet nginx-deployment-c464767dd 做扩容新建出 3 个 Pod；

6. 老 ReplicaSet nginx-deployment-64969b6699 做缩容，从 2 个 Pod 缩至 1 个 Pod；

7. 新 ReplicaSet nginx-deployment-c464767dd 做扩容新建出 4 个 Pod；

8. 老 ReplicaSet nginx-deployment-64969b6699 做缩容，从 1 个 Pod 缩至 0 个 Pod。

所以可以得出结论，Deployment 的更新实际上就是两个 ReplicaSet 通过 StrategyType 做更新的过程。

4. Deployment 的回滚

我们在日常开发中有时候在做发布的时候发布了异常的版本，这时候就需要我们做回滚操作将线上版本回滚到上一

个版本，在 Kubernetes 中通过 Deployment 管理我们的应用的时候也可以进行回滚。

首先我们通过 kubectl rollout history 查看历史版本，但是因为我们在做 kubectl apply 操作的时候没有设置 --record

=true（这个选项默认为 false），所以这里的 CHANGE-CAUSE 显示为空。

但是我们可以通过指定 --revision 参数来显示每个版本具体的行为，如下所示，我们查看一下 #1 版本的信息。

回滚的话我们可以回滚到上一次修改的版本。

$ kubectl rollout history deployment nginx-deployment -n imooc
deployment.extensions/nginx-deployment
REVISION CHANGE-CAUSE
1 <none>
2 <none>
3 <none>

$ kubectl rollout history deployment nginx-deployment -n imooc --revision=1
deployment.extensions/nginx-deployment with revision #1
Pod Template:
 Labels: app=nginx
 pod-template-hash=64969b6699
 Containers:
 nginx:
 Image: nginx:1.14.2
 Port: 80/TCP
 Host Port: 0/TCP
 Limits:
 cpu: 100m
 memory: 200Mi
 Requests:
 cpu: 100m
 memory: 200Mi
 Environment: <none>
 Mounts: <none>
 Volumes: <none>

$ kubectl rollout undo deployment nginx-deployment -n imooc


38 Kubernetes 批处理介绍：

Job 和 CronJob

或者回滚到指定的某个版本。

回滚完之后我们可以通过 kubectl descirbe 查看 Deployment 的明细信息来查看是否回滚成功。

5. 缩放 Deployment

缩放 Deployment 也是常用的一个操作，比如流量高峰期，扩容出更多的 Pod。我们可以通过如下的命令来进行自

动的扩缩容。

下面是缩容操作。

如果设置了 水平自动缩放 Pod ，则可以通过 kubectl autoscale 来根据 cpu 使用率来进行自动缩放。

6. 总结

本文介绍了 Deployment 的适用场景和典型使用 case，包括：创建、更新、回滚、缩放，希望大家可以自动动手操

作起来。

}

$ kubectl rollout undo deployment nginx-deployment -n imooc --to-revisoin=1

kubectl scale deployment nginx-deployment --replicas=7

$ kubectl get pods -n imooc
NAME READY STATUS RESTARTS AGE
nginx-deployment-57f49c59d-8dzn4 1/1 Running 0 5m5s
nginx-deployment-57f49c59d-9jvrp 1/1 Running 0 5m5s
nginx-deployment-57f49c59d-lddjm 1/1 Running 0 5m3s
nginx-deployment-57f49c59d-m57sr 1/1 Running 0 5m5s
nginx-deployment-57f49c59d-q6mx6 1/1 Running 0 5m4s
$ kubectl scale deployment nginx-deployment --replicas=7
deployment.extensions/nginx-deployment scaled
$ kubectl get pods -n imooc
NAME READY STATUS RESTARTS AGE
nginx-deployment-57f49c59d-8dzn4 1/1 Running 0 5m49s
nginx-deployment-57f49c59d-9jvrp 1/1 Running 0 5m49s
nginx-deployment-57f49c59d-l89w2 1/1 Running 0 3s
nginx-deployment-57f49c59d-lddjm 1/1 Running 0 5m47s
nginx-deployment-57f49c59d-m57sr 1/1 Running 0 5m49s
nginx-deployment-57f49c59d-pfpsm 1/1 Running 0 3s
nginx-deployment-57f49c59d-q6mx6 1/1 Running 0 5m48s

$ kubectl scale deployment nginx-deployment -n imooc --replicas=3
deployment.extensions/nginx-deployment scaled
$ kubectl get pods -n imooc
NAME READY STATUS RESTARTS AGE
nginx-deployment-57f49c59d-8dzn4 1/1 Running 0 6m52s
nginx-deployment-57f49c59d-9jvrp 1/1 Running 0 6m52s
nginx-deployment-57f49c59d-l89w2 0/1 Terminating 0 66s
nginx-deployment-57f49c59d-m57sr 1/1 Running 0 6m52s
nginx-deployment-57f49c59d-pfpsm 0/1 Terminating 0 66s
nginx-deployment-57f49c59d-q6mx6 0/1 Terminating 0 6m51s

kubectl autoscale deployment nginx-deployment --min=10 --max=15 --cpu-percent=80

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/


36 Kubernetes
ReplicationController 和
ReplicaSet 介绍

	1. 使用场景
	2. 创建 Deployment 对象
	3. Deployment 的更新
	4. Deployment 的回滚
	5. 缩放 Deployment
	6. 总结

