
更新时间：2020-10-30 09:52:37

41 使用 Service 访问一组特定的 Pod

试想这么一种场景，我们的应用程序都通过 Deployment 来管理，Deployment 后端管理了一组 Pod，每个 Pod 都

有自己的 IP 地址。而且对于 Deployment 这种模式，Pod 挂掉之后 Deployment 会重新启动一个新的 Pod。

这就引入了一个问题，如果其他应用想要访问这个 Deployment 提供的服务，直接去访问 Pod 肯定是不行的，那么

有没有一种类似服务发现的机制帮助我们做这件事情呢？

1. Service 介绍

针对上面说的这个问题，Kubernetes 提供了一种 API 对象叫做 Service。Service 可以理解为一种访问一组特定

Pod 的策略。

举个例子，考虑一个图片处理应用程序，通过 Pod 运行了 3 个副本，并且是无状态的。前端访问该应用程序时，

不需要关心实际是调用了那个 Pod 实例。后端的 Pod 发生重启时，前端不应该也不需要感知到。对于这种解耦关

系，我们就可以通过 Service 来做。Service 与后端的多个 Pod 进行关联（通过 selector），前端只需要访问

Service 即可。

2. 创建 Service

在 Kubernetes 中，Service 对象也可以通过一个 yaml 文件来定义，下面就是一个简单 Service 定义。

成功的奥秘在于目标的坚定。——迪斯雷利

file:///read/84/article/2443
file:///read/84/article/2446

这个 Service 对象做的事情也比较简单，创建一个名称为 my-service 的 Service 对象，它会将对 80 端口的 TCP 请

求转发到一组 Pod 上，这些 Pod 的特点是被打上标签 app=nginx，并且使用 TCP 端口 80。这些 Pod 我们暂时还

没有创建，我们先把这个 Service 通过 kubectl apply 创建出来。

同样的，我们通过 kubectl describe service 来查看一下我们创建出来的 Service 对象。

这里有几个关键的信息，包括：

selector：Service 会根据 selector 条件去选择 label 满足条件的 Pod 进行请求转发；

Type: Service 的类型，这里是 ClusterIP 类似，也是默认的类型。简单来说，ClusterIP 类型会分配一个固定

的 IP，然后只能通过集群内部进行访问；

IP：Service 对象分配的 IP，可以认为是一个 vip；

Port/TargetPort：前者是 Service 对象监听的端口，后者是转发的目标 Pod 的端口；

Endpoints：是一个列表，表示转发到后端的 Pod 的 IP 集合。

这其中比较重要的一个点就是 endpoints，因为现在集群内没有满足条件的 Pod 可以供转发，所以 endpoints 字段

目前为空。

3. 请求转发

下面我们创建一组满足条件的 nginx 的 Pod：具有 label app=nginx 和使用端口 80。下面就是我们的 Deployment

的定义。

apiVersion: v1
kind: Service
metadata:
 name: nginx-service
spec:
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

$ kubectl apply -f nginx-service.yaml -n imooc
service/nginx-service created

$ kubectl describe service nginx-service -n imooc
Name: nginx-service
Namespace: imooc
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"nginx-service","namespace":"imooc"},"spec":{"ports":[{"port":80,"...
Selector: app=nginx
Type: ClusterIP
IP: 10.0.213.149
Port: <unset> 80/TCP
TargetPort: 80/TCP
Endpoints: <none>
Session Affinity: None
Events: <none>

通过 kubectl apply 创建该 Deployment。

我们通过 kubectl get pods 看一下改 deployment 创建的 pod 情况，通过 -o wide 参数可以显示更多的字段，比如

IP，节点名称，我们这里主要是为了查看 IP，所以其他字段域暂时先隐藏掉。记住下面的几个 Pod 的 IP。

我们现在再回过头来查看一下之前创建的 Service 对象。如下所示，我们可以看到其中的 Endpoints 字段域不再为

空了，而是上面的三个 Pod 的 IP:Port 集合。

实际上，Service 对象会创建一个 endpoints 对象，我们可以通过 kubectl get endpoints 来查看。

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.9.1
 ports:
 - containerPort: 80
 resources:
 limits:
 cpu: 100m
 memory: 200Mi
 requests:
 cpu: 100m
 memory: 200Mi

$ kubectl apply -f nginx-dm.yaml -n imooc
deployment.apps/nginx-deployment created

kubectl get pods -n imooc -o wide | grep nginx
nginx-deployment-c464767dd-6ts4x 1/1 Running 0 85s 10.1.1.154
nginx-deployment-c464767dd-d9mh7 1/1 Running 0 85s 10.1.2.159
nginx-deployment-c464767dd-qd22h 1/1 Running 0 85s 10.1.2.31

$ kubectl describe service nginx-service -n imooc
Name: nginx-service
Namespace: imooc
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"nginx-service","namespace":"imooc"},"spec":{"ports":[{"port":80,"...
Selector: app=nginx
Type: ClusterIP
IP: 10.0.213.149
Port: <unset> 80/TCP
TargetPort: 80/TCP
Endpoints: 10.1.1.154:80,10.1.2.159:80,10.1.2.31:80
Session Affinity: None
Events: <none>

现在我们已经创建出来了后端应用，我们看一下请求是如何进行转发的。所有到 Service IP 的 80 端口的请求都会

被转发到后端的三个 Pod 中的一个，转发到哪个 Pod 对应到不同的负载均衡策略。还有一点需要注意的

是，ClusterIP 类型的 Service 只能在集群内部进行访问。如下所示，我们直接访问 Service IP 对应的端口 80，直

接返回了 Nginx 的欢迎页面，也就是转发到了运行 nginx 的 Pod 中了。

4. 多端口 Service

有时候我们会为同一个应用分配多个端口，比如开放 http 端口 80，开放 https 端口 443，我们同样可以在 Service

对象中配置多个端口。但是需要注意的是，当使用多个端口时，必须提供所有端口名称，以他们无歧义。端口名称

只能包含小写字母数字字符和中划线，并且必须以字母数字字符开头和结尾。如下是一个多端口 Service 的定义描

述。

$ kubectl get endpoints -n imooc
NAME ENDPOINTS AGE
nginx-service 10.1.1.154:80,10.1.2.159:80,10.1.2.31:80 113m
$ kubectl describe endpoints nginx-service -n imooc
Name: nginx-service
Namespace: imooc
Labels: <none>
Annotations: endpoints.kubernetes.io/last-change-trigger-time: 2020-04-19T12:55:17+08:00
Subsets:
 Addresses: 10.1.1.154,10.1.2.159,10.1.2.31
 NotReadyAddresses: <none>
 Ports:
 Name Port Protocol
 ---- ---- --------
 <unset> 80 TCP

Events: <none>

$ curl 10.0.213.149:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

5. 设置固定 IP

前面的 Service 都是分配了随机 IP，随机 IP 在 ApiServer 的启动参数 service-cluster-ip-range 的 CIDR 范围内。

如果我们想要对 IP 有更强的掌控力，那么我们可以在 Service 的定义中通过参数 spec.clusterIP 指定自己的

clusterIP，比如希望替换一个已存在的 DNS 条目，或者遗留系统中已经配置了一个固定 IP 并且修改起来比较麻

烦。

6. 服务发现

Kubernetes 提供了两种服务发现模式：环境变量和 DNS。

环境变量

环境变量的方式指的是 Kubernetes 会将集群中的 Service 对象以环境变量的方式注入到 Pod 中，形如 {SVCNAME

}_SERVICE_HOST 和 {SVCNAME}_SERVICE_PORT 。

举个例子，一个 redis 实例 redis-master 的 Service 暴露了 TCP 端口 6379，同时分配了 ClusterIP 地址

10.0.0.11，对应的环境变量如下。

环境变量这种方式有个比较明显的弊端：环境变量不会自动更新。如果 Service 在 Pod 启动之后才创建成功，那么

这个 Service 在该 Pod 内的环境变量中是找不到的。

DNS

Kubernetes 集群的 DNS 服务器，比如 CoreDNS，会监控集群中的新服务，并为每个服务创建一组 DNS 记录。如

果整个集群中都启用了 DNS，则所有的 Pod 都应该能够通过其 DNS 名称自动解析服务。

apiVersion: v1
kind: Service
metadata:
 name: my-service
spec:
 selector:
 app: MyApp
 ports:
 - name: http
 protocol: TCP
 port: 80
 targetPort: 9376
 - name: https
 protocol: TCP
 port: 443
 targetPort: 9377

REDIS_MASTER_SERVICE_HOST=10.0.0.11
REDIS_MASTER_SERVICE_PORT=6379
REDIS_MASTER_PORT=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP=tcp://10.0.0.11:6379
REDIS_MASTER_PORT_6379_TCP_PROTO=tcp
REDIS_MASTER_PORT_6379_TCP_PORT=6379
REDIS_MASTER_PORT_6379_TCP_ADDR=10.0.0.11


40 Kubernetes 有状态应用管理
StatefulSet 42 Kubernetes Service 类型

举个例子，如果在 Namespace my-ns 中有一个名称为 my-svc 的服务，则 DNS 服务器会为该服务创建一个 DNS

条目 my-svc.my-ns 。位于 Namespace my-ns 下的 Pod 则可以通过名称 my-svc 或者 my-svc.my-ns 来进行服务

发现。其他 Namespace 下的 Pod 则可以通过 my-svc.my-ns 来进行服务发现。

7. Headless Service

对于拥有 ClusterIP 的 Service，当我们访问其 ClusterIP 时，其会自动为我们做负载均衡。但是有的时候我们想要

嵌入我们自己的负载均衡策略，那么对于这种情况，可以通过指定 ClusterIP 的值为 None ，这个时候创建出来的

Service 则为 Headless Service。我们在做服务发现时，这个 Service 返回的为后端的 Pod 列表，这个时候我们就

可以灵活发挥了。下面举个例子。

这个是一个很简单的 Headless Service，后端代理了多个具有 label: app=nginx 的 Pod。我们将该 Service 进行部

署，然后在 Kubernetes 集群中的某个 Pod 内部通过 nslookup 来查询该服务。

我们可以看到服务发现时候，直接将后端的 Pod 列表返回了，每个 Pod 对应的 DNS 条目为 ip.<svc-name>.

<namespace>.svc.cluster.local，这个时候我们就可以根据需求来做进一步操作了。

8. 总结

本篇文章介绍了 Kubernetes 中的 API 对象 Service 的基本情况，下一篇文章将会和大家介绍 Kubernetes 提供的多

种 Service 类型。

}

apiVersion: v1
kind: Service
metadata:
 name: nginx-service
spec:
 clusterIP: None
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

/ $ nslookup nginx-service

Name: nginx-service
Address 1: 10.1.1.154 10-1-1-154.nginx-service.imooc.svc.cluster.local
Address 2: 10.1.2.31 10-1-2-31.nginx-service.imooc.svc.cluster.local
Address 3: 10.1.2.159 10-1-2-159.nginx-service.imooc.svc.cluster.local

	1. Service 介绍
	2. 创建 Service
	3. 请求转发
	4. 多端口 Service
	5. 设置固定 IP
	6. 服务发现
	环境变量
	DNS

	7. Headless Service
	8. 总结

