
更新时间：2020-11-02 09:58:53

42 Kubernetes Service 类型

Kubernetes Service 类型

我们上一篇文章简单介绍了 Kubernetes Service 的使用，默认使用了 ClusterIP 的 Service 类型，实际上

Kubernetes 支持的 Service 类型有多种：

ClusterIP：默认的 Service Type，通过集群的内部 IP 暴露服务，只能在集群内部进行访问；

NodePort：通过每个 Node 上面的某个端口 （NodePort）暴露服务。通过该端口的请求会自动路由到后端的

ClusterIP 服务，这个 ClusterIP 服务是自动创建的。通过 NodePort，我们可以在集群外部访问我们的服务，

但是，在生产环境上面并不建议使用 NodePort；

LoadBalancer：使用云厂商提供的负载均衡器，可以向外部暴露服务。外部的负载均衡器可以路由到

NodePort 和 ClusterIP 服务；

ExternalName：通过返回 CNAME 将服务映射到 externalName 字段中的内容；

Ingress：严格来说，Ingress 不是一种服务类型，而是用来充当集群的服务的入口点。Ingress 可以将路由规

则整合到一个资源中，然后通过同一个 IP 地址暴露多个服务。

1. ClusterIP

衡量一个人的真正品格，是看他在知道没人看见的时候干些什么。——孟德斯鸠

file:///read/84/article/2444

ClusterIP 模式是 Kubernetes Service 的默认类型，ClusterIP 类型的 Service 一个重要特点就是只能在集群内部访

问。

2. NodePort

使用 NodePort 类型的 Serive 只需要在 spec 中将 type 中指定为 NodePort 即可，下面是一个简单的例子。

类似的我们通过 kubectl apply 创建 Service 对象。

下面的 nginx-service-nodeport 就是我们刚刚创建的 NodePort 类型的 Service，我们可以看到 TYPE 显示为了

NodePort。并且 CLUSTER-IP 字段也分配了一个 IP，这个是怎么回事呢？其实这个是 NodePort 类型的 Service

自动创建的 ClusterIP，也就是说 NodePort 类型的 Service 后端还是通过 ClusterIP 来实现的。

然后是 PORT(S) 字段域有两个端口值，前面表示 ClusterIP 对应的端口，也就是 30001；后面的表示 Node 本地对

应的端口，是 31633。那么可能有人会问了，我们定义 Service 的时候并没有指定 Node 的本地端口是多少啊？这

个端口值是随机的吗？

是的，没错，确实是随机的，只不过是在一个区间内随机。这个区间是在 kubernetes 的 ApiServer 启动的时候，

启动参数里面通过指定参数 --service-node-port-range 来指定的，默认为 30000 - 32767。

下面是我在阿里云的 ACK 上购买的 Kubernetes 集群内的 ApiServer 的启动参数，我们可以看到参数 --service-nod

e-port-range 指定的值为 30000 - 32767，和默认值一样，对于我们启动的 NodePort 的 Service 系统分配的端口值

为 31633，也是落在这个区间。

apiVersion: v1
kind: Service
metadata:
 name: nginx-service-nodeport
spec:
 type: NodePort
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 30001
 targetPort: 80

$ kubectl apply -f nginx-service-nodeport.yaml -n imooc
service/nginx-service-nodeport created
$ kubectl get service -n imooc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx-service ClusterIP 10.0.213.149 <none> 80/TCP 7h26m
nginx-service-nodeport NodePort 10.0.8.178 <none> 30001:31633/TCP 1s

NodePort 的值实际上是可以我们自己指定的，指定的时候需要注意的是，一定要保证指定的值处于参数 --service-

node-port-range 指定的区间内，不然可能会导致 Service 创建失败。下面是指定 NodePort 的示例 yaml。

我们还是通过 kubectl describe 来看一下 NodePort 的 Service 对象。

和 ClusterIP 类型的 Service 对象简单对比一下不难发现， NodePort 类型的 Service 对象除了 Type 为 NodePort

外，只多个了一个 NodePort 字段，总结一下 NodePort 类型的 Service 的几种端口：

NodePort：Node 节点本地启动的用来监听和转发请求的端口，每个节点上都会启动；

Port：NodePort 类型的 Service 自动创建的 ClusterIP 的端口；

TargetPort：ClusterIP 转发的目标端口。

所以对于 NodePort 类型的 Service，外部的请求顺序是：NodePort -> Port -> TargetPort。

ps aux | grep service-node-port
root 6351 2.0 2.9 477832 235040 ? Ssl 2019 5018:00 kube-apiserver --audit-log-maxbackup=10 --audit-log-maxsize=100 --audit-log-path=/var/l
og/kubernetes/kubernetes.audit --audit-log-maxage=7 --audit-policy-file=/etc/kubernetes/audit-policy.yml --apiserver-count=500 --endpoint-reconciler-typ
e=lease --enable-aggregator-routing=true --runtime-config=admissionregistration.k8s.io/v1beta1 --profiling=false --advertise-address=172.16.60.185 --all
ow-privileged=true --authorization-mode=Node,RBAC --client-ca-file=/etc/kubernetes/pki/apiserver-ca.crt --cloud-provider=external --enable-admission-p
lugins=NodeRestriction --enable-bootstrap-token-auth=true --etcd-cafile=/etc/kubernetes/pki/etcd/ca.pem --etcd-certfile=/etc/kubernetes/pki/etcd/etcd-cli
ent.pem --etcd-keyfile=/etc/kubernetes/pki/etcd/etcd-client-key.pem --etcd-servers=https://172.16.60.183:2379,https://172.16.60.184:2379,https://172.16.
60.185:2379 --feature-gates=VolumeSnapshotDataSource=true,CSINodeInfo=true,CSIDriverRegistry=true --insecure-port=0 --kubelet-client-certificate=/
etc/kubernetes/pki/apiserver-kubelet-client.crt --kubelet-client-key=/etc/kubernetes/pki/apiserver-kubelet-client.key --kubelet-preferred-address-types=Inte
rnalIP,ExternalIP,Hostname --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.crt --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client.ke
y --requestheader-allowed-names=front-proxy-client --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.crt --requestheader-extra-headers-
prefix=X-Remote-Extra- --requestheader-group-headers=X-Remote-Group --requestheader-username-headers=X-Remote-User --secure-port=6443 --s
ervice-account-key-file=/etc/kubernetes/pki/sa.pub --service-cluster-ip-range=10.0.0.0/16 --service-node-port-range=30000-32767 --tls-cert-file=/etc/kub
ernetes/pki/apiserver.crt --tls-private-key-file=/etc/kube

apiVersion: v1
kind: Service
metadata:
 name: nginx-service-nodeport
spec:
 type: NodePort
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 30001
 targetPort: 80
 nodePort: 30002

$ kubectl describe service nginx-service-nodeport -n imooc
Name: nginx-service-nodeport
Namespace: imooc
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"nginx-service-nodeport","namespace":"imooc"},"spec":{"ports":[{
"p...
Selector: app=nginx
Type: NodePort
IP: 10.0.8.178
Port: <unset> 30001/TCP
TargetPort: 80/TCP
NodePort: <unset> 31633/TCP
Endpoints: 10.1.1.154:80,10.1.2.159:80,10.1.2.31:80
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

3. LoadBalancer

LoadBalancer 类型的 Service 只需要在 Service 的 spec 中将 type 指定为 LoadBalancer 即可，然后将会异步的创

建负载均衡器。这样外部流量将向请求到外部的负载均衡器上，然后转发到后端的真正提供服务的 Pod 上，但是

LoadBalancer 的具体实现要依赖于云提供厂商。下面我们以阿里云的容器服务为例，创建一个 LoadBalancer 类型

的 Service，描述文件如下。

然后通过 kubectl apply 创建该 Service。

这里的 EXTERNAL-IP 就是外部的负载均衡器的 IP，对应的端口是 30005，同时我们可以看到在 PORT(S) 字段域

还起了一个本地的 NodePort 端口 30423。

我们下面用 curl 请求一个外部的负载均衡器，返回的信息确实是 nginx 服务器，也就是后端的 Pod 返回的。

apiVersion: v1
kind: Service
metadata:
 name: nginx-service-lb
spec:
 type: LoadBalancer
 selector:
 app: nginx
 ports:
 - protocol: TCP
 port: 30005
 targetPort: 80

$ kubectl apply -f nginx-service-lb.yaml -n imooc
service/nginx-service-lb configured
$ kubectl get service -n imooc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx-service ClusterIP 10.0.213.149 <none> 80/TCP 11h
nginx-service-lb LoadBalancer 10.0.13.63 39.102.158.120 30005:30423/TCP 64m

$ curl 39.102.158.120:30005
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

我们通过 kubectl describe 查看一下 LoadBalancer 类型的 Service 的信息。

我们可以看到除了 Type 变成 LoadBalancer 类型之外，还多了一个 LoadBalancer Ingress，其实就是外部的负载

均衡器的 IP。

4. ExternalName

类型为 ExternalName 的 Service 将服务映射到 DNS 名称，而不是通过 selector 选择器。可以使用 spec.externalN

ame 参数指定 DNS 名称。例如，如下 Service 定义将服务 nginx-service-external-name 服务映射为

www.baidu.com 。

我们还是通过 kubectl apply 来创建 Service

我们可以看到 Service nginx-service-external-name 显示的 TYPE 为 ExternalName，EXTERNAL-IP 为我们的 spec

.externalName 字段定义的值。当查找服务 nginx-service-external-name.imooc.svc.cluster.local 时，集群 DNS 服务

将返回 CNAME 记录，也就是 www.baidu.com 。访问该 Service 的方式与其他服务的方式相同，但主要区别在于

重定向发生在 DNS 级别，而不是通过代理和转发。

当然也可以通过 kubectl describe 来看一下 Service 的详情信息。

$ kubectl describe service nginx-service-lb -n imooc
Name: nginx-service-lb
Namespace: imooc
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"nginx-service-lb","namespace":"imooc"},"spec":{"ports":[{"port":
3...
Selector: app=nginx
Type: LoadBalancer
IP: 10.0.13.63
LoadBalancer Ingress: 39.102.158.120
Port: <unset> 30005/TCP
TargetPort: 80/TCP
NodePort: <unset> 30423/TCP
Endpoints: 10.1.1.154:80,10.1.2.159:80,10.1.2.31:80
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

apiVersion: v1
kind: Service
metadata:
 name: nginx-service-external-name
spec:
 type: ExternalName
 externalName: www.baidu.com

$ kubectl apply -f nginx-service-ename.yaml -n imooc
service/nginx-service-external-name created
$ kubectl get service nginx-service-external-name -n imooc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx-service-external-name ExternalName <none> www.baidu.com <none> 17s

http://www.baidu.com


41 使用 Service 访问一组特定的
Pod

5. Ingress

Ingress 严格来说并不是一种 Service 类型，而是 Kubernetes 官方提供的用于对外暴露服务的方式。下面是一个简

单的 Ingress 的声明。

Ingress 中的最核心的地方是 spec.rules，可以在 rule 中定一个多个规则，每个规则下面包含以下信息：

host：服务暴露的域名；

http：路由转发协议，可以是 http 或者 https，协议下面包含：

path：路由 router；

backend：后端服务，主要包括服务名称和服务端口。

6. 总结

本文简单介绍了 Kubernetes 提供的几种服务类型：

ClusterIP 是一种默认的服务类型，具有较多限制；

NodePort 是一种可以快速暴露服务的服务类型，一般用来快速调试；

LoadBalancer 有时候会用于生产环境；

ExternalName 很少使用；

Ingress 目前 kubernetes 集群向外暴露服务的最长使用的方式。

}

$ kubectl describe service nginx-service-external-name -n imooc
Name: nginx-service-external-name
Namespace: imooc
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration:
 {"apiVersion":"v1","kind":"Service","metadata":{"annotations":{},"name":"nginx-service-external-name","namespace":"imooc"},"spec":{"extern
...
Selector: <none>
Type: ExternalName
IP:
External Name: www.baidu.com
Session Affinity: None
Events: <none>

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: example-ingress
spec:
 rules:
 - host: www.example.com
 http:
 paths:
 - path: /foo
 backend:
 serviceName: nginx-service
 servicePort: 80

	Kubernetes Service 类型
	1. ClusterIP
	2. NodePort
	3. LoadBalancer
	4. ExternalName
	5. Ingress
	6. 总结

