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@SIf4j
public class CloneDemo {

public static void main(String[] args) {
Order order = OrderMocker.mock();
order.setOrderNo("first");
doSomeThing(order);
order.setOrderNo("second");
doSomeThing(order);

private static void doSomeThing(Order order) {
try {
TimeUnit. SECONDS sleep(1L);
} catch (InterruptedException e) {
e.printStackTrace();

}
System.out.printin(order.getOrderNo());
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@SIf4
public class CloneDemo {

public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool(5);
Order order = OrderMocker.mock();
order.setOrderNo("first");
executorService.execute(() -> doSomeThing(order));
order.setOrderNo("second");
executorService.execute(() -> doSomeThing(order));

private static void doSomeThing(Order order) {
try {
TimeUnit. SECONDS sleep(1L);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.printin(order.getOrderNo());
}
}
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I
* Creates and returns a copy of this object. The precise meaning

* of "copy" may depend on the class of the object. The general

* intent is that, for any object {@code x}, the expression:

* <blockquote>

* <pre>

* x.clone() != x</pre></blockquote>

* will be true, and that the expression:

* <blockquote>

* <pre>

* x.clone().getClass() == x.getClass()</pre></blockquote>

* will be {@code true}, but these are not absolute requirements.

* While it is typically the case that:

* <blockquote>

* <pre>

* x.clone().equals(x)</pre></blockquote>

* will be {@code true}, this is not an absolute requirement.

* <p>

* By convention, the returned object should be obtained by calling

* {@code super.clone}. If a class and all of its superclasses (except

* {@code Object}) obey this convention, it will be the case that

* {@code x.clone().getClass() == x.getClass()}.

*<p>

* By convention, the object returned by this method should be independent
* of this object (which is being cloned). To achieve this independence,

* it may be necessary to modify one or more fields of the object returned
* by {@code super.clone} before returning it. Typically, this means

* copying any mutable objects that comprise the internal "deep structure”
* of the object being cloned and replacing the references to these

* objects with references to the copies. If a class contains only

* primitive fields or references to immutable objects, then it is usually

* the case that no fields in the object returned by {@code super.clone}

* need to be modified.

* <p>

* The method {@code clone} for class {@code Object} performs a

* specific cloning operation. First, if the class of this object does

* not implement the interface {@code Cloneable}, then a

* {@code CloneNotSupportedException} is thrown. Note that all arrays

* are considered to implement the interface {@code Cloneable} and that
* the return type of the {@code clone} method of an array type {@code T[]}
* is {@code T[J} where T is any reference or primitive type.

* Otherwise, this method creates a new instance of the class of this

* object and initializes all its fields with exactly the contents of

* the corresponding fields of this object, as if by assignment; the

* contents of the fields are not themselves cloned. Thus, this method

* performs a "shallow copy" of this object, not a "deep copy" operation.

* <p>

* The class {@code Object} does not itself implement the interface

* {@code Cloneable}, so calling the {@code clone} method on an object
* whose class is {@code Object} will result in throwing an

* exception at run time.

* @return  a clone of this instance.

* @throws CloneNotSupportedException if the object's class does not

*

support the {@code Cloneable} interface. Subclasses

*

that override the {@code clone} method can also

*

throw this exception to indicate that an instance cannot
* be cloned.

* @see java.lang.Cloneable

*/

protected native Object clone() throws CloneNotSupportedException;
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@Data
public class Order implements Cloneable {

private Long id;
private String orderNo;
private List<ltem> itemList;

@Override
public Order clone() {
try {
return (Order)super.clone();
} catch (CloneNotSupportedException ignore) {
I A= 3% 5L
}

return null;

}
}
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public class OrderMocker {

public static Order mock() {
Order order = new Order();
order.setld(1L);
order.setOrderNo("abcdefg");
List<ltem> items = new ArrayList<>();
ltem item = new ltem();
item.setld(OL);
item.setltem|d(OL);
item.setName(" (Fi B 2 Javalt &k FMF) FEMRZEUREAE");
item.setDesc("fif b #E");
items.add(item);
order setltemList(items);
return order;

}

}

@Test

public void shallowClone() {
Order order = OrderMocker.mock();
Order cloneOrder = order.clone();

assertFalse(order == cloneOrder);
assertTrue(order.getltemList() == cloneOrder.getltemList());
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@Data
public class Order implements Cloneable {

private Long id;
private String orderNo;

private List<ltem> itemList;

@Override
public Order clone() {
try {
Order order = (Order) super.clone();
it (id = null) {
order.id = new Long(id);
}
if (orderNo != null) {
order.orderNo = new String(orderNo);

}

if (itemList != null) {
List<ltem> items = new ArrayList<>();
for (kem each : itemList) {
ltem item = new ltem();
Long id = each.getld();
if(id = null){
item.setld(new Long(id));
}
Long itemld = each.getltemld();
if(itemld = null){
item setltemld(new Long(itemlid));
}
String name = each.getName();
if(name != null){
item.setName(new String(name));
}
String desc = each.getDesc();
if(desc = null){
item.setDesc(new String(desc));
}
items.add(item);
}
order setltemList(items);
}
return order;
} catch (CloneNotSupportedException ignore) {

return null;
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@Test

public void deepClone() {
Order order = OrderMocker.mock();
Order cloneOrder = (Order) order.clone();

assertFalse(order == cloneOrder);
assertFalse(order.getltemList() == cloneOrder.getltemList());
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*/
public static <T> T deepClone(T origin) throws IOException, ClassNotFoundException {
ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
try (ObjectOutputStream objectOutputStream = new ObjectOutputStream (outputStream);) {
objectOutputStream.writeObject(origin);
objectOutputStream flush();
}
byte[] bytes = outputStream toByteArray();
try (ByteArraylnputStream inputStream = new ByteArraylnputStream (bytes);) {
return JdkSerialUtil.readObject(inputStream);
}
}
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serialUtil
Order order = OrderMocker.mock
VK 3 e
Order cloneOrder = SerializationUtils.clone(order

assertFalse(order == cloneOrder
assertFalse(order.getltemList() == cloneOrder.getltemList
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[
* <p>Deep clone an {@code Object} using serialization.</p>
* <p>This is many times slower than writing clone methods by hand
* on all objects in your object graph. However, for complex object
* graphs, or for those that don't support deep cloning this can
* be a simple alternative implementation. Of course all the objects
* must be {@code Serializable}.</p>
* @param <T> the type of the object involved
* @param object the {@code Serializable} object to clone
* @return the cloned object
* @throws SerializationException (runtime) if the serialization fails
*/
public static <T extends Serializable> T clone(final T object) {
if (object == null) {
return null;
}
final byte[] objectData = serialize(object);
final ByteArraylnputStream bais = new ByteArraylnputStream(objectData);

try (ClassLoaderAwareObjectinputStream in = new ClassLoaderAwareObjectinputStream(bais,
object.getClass().getClassLoader())) {
I
* when we serialize and deserialize an object,
* it is reasonable to assume the deserialized object
* is of the same type as the original serialized object
*/
@SuppressWarnings("unchecked") // see above
final T readObject = (T) in.readObject();
return readObject;

} catch (final ClassNotFoundException ex) {
throw new SerializationException("ClassNotFoundException while reading cloned object data”, ex);

} catch (final IOException ex) {
throw new SerializationException("|OException while reading or closing cloned object data", ex);
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public static <T> T deepCloneByGson(T origin, Class<T> clazz) {
Gson gson = new Gson();
return gson.fromJson(gson.toJson(origin), clazz);
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Order order = OrderMocker.mock
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Order cloneOrder = CloneUtil.deepCloneByGson(order, Order

assertFalse(order == cloneOrder
assertFalse(order.getltemList() == cloneOrder.getltemList
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