04 % >] ¥ DU R $E DL IR 07 X

BRI, AR W AT % FERHT

1. 015

[

Il

(T % 10 TWH>*T Object [¥) clone & @A 1:

[] 1HH Object i clone J5id ke NIt 4 .

Y. X% clone JriEBRINE S V1, S AHSCBIARYE IFHA'S clone J7 ik SEHLION B IKIR i [205 UL

TR FRATTEE R J LA 7]

1. AR ?

He P8 DURARPE UL DO 2 A4
PRI H AT A7
PRI 2 A

AR SRR FE DL ?

o » w DN

W LA R 2 A P8 DUARYE DU S S, (B0 RS ZAT, AR ViR M S A B AR &)
XSRS VLML 3 5, AR DL SEBLs sNEE A TCTA A A i AR 0) R

St
at

NUATTRHE KRR RGN FUIZ BRI, DUERZORAE RSB U AT LA — e =, RIGIEH

2. Ena

file:///read/55/article/1140
file:///read/55/article/1142

2.1 # 0| RS
RAEGFIH 1 AL R

HeSE T REXT “TERE” IR IR IR 2:

kg (S Clone) 7B/ L2 ia M HAEMSOR A = A 5 IR R AN A 58 4 Ar R 2 R A 2 R AR

o

fEp 25 b, SORESR B E IR B AR I B HEAR R AR, AR 2 A A i i S B R) JE v S 5 UM —
FERRIRAT KB TARME

EAEYE b, RAREFMEME S —B DNA FF3 (7 oife) « 400 (4 eke) stk (AMEsERE)

TCRE—AMEVR IR GG — A5 e A IR B A e & HE IR A S B RGBT =R

VAL P U R A MRS, T DK AR
RERAOHE L, BRRHRFORIOR R S —BH R, KA BUOH I3 L.
22 M AT EE NITR?

RABAE 2 M St 4 TEHE R

RAHA R ELA K

iT#2% (Order)

Order
Long id
String orderNo!

List<ltem> itemList

P Cltem) -

ltem
Long id

Long itemlid
String name
String desc

11 A Fe A

WERBATE MRS 1 MR R, 2R 6 MR 5.

K IRA —A “EHI” J59%, TR RS AR, T BRI TR RS AR R BIR (itemList) AR
JEIEXT R, R—ARRTTE?

FA AR B IR R E L KRR . R A A EERE, EELREESIT RS 5 AHMH doSomeThing
¥, AESRIFTED first F1 second BiANIT 4 5 FAFH .

@SIf4j
public class CloneDemo {

public static void main(String[] args) {
Order order = OrderMocker.mock();
order.setOrderNo("first");
doSomeThing(order);
order.setOrderNo("second");
doSomeThing(order);

private static void doSomeThing(Order order) {
try {
TimeUnit. SECONDS sleep(1L);
} catch (InterruptedException e) {
e.printStackTrace();

}
System.out.printin(order.getOrderNo());

-

IEATHRE 7 e 45 S Bff 2 first . second .

(BAEZ LRI, RIS SR R, KRR IR AR E R, JEH T RS
Bk R B L B LR .

@SIf4
public class CloneDemo {

public static void main(String[] args) {
ExecutorService executorService = Executors.newFixedThreadPool(5);
Order order = OrderMocker.mock();
order.setOrderNo("first");
executorService.execute(() -> doSomeThing(order));
order.setOrderNo("second");
executorService.execute(() -> doSomeThing(order));

private static void doSomeThing(Order order) {
try {
TimeUnit. SECONDS sleep(1L);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.printin(order.getOrderNo());
}
}

RS R second . second .

R b n SR REAE 50 B — AT R &, FE B R MBSO R a6 5, it B S B A 1A I RR
2.3 AR EE DL ? HREE DLARES DL X A At 4 ?
RIS EAMAE, TA1%iE Object K clone FREEIRINE KL L,

AR BIRATIEE NI, A A2 RENS 15 BT ATAE 22 252

I
* Creates and returns a copy of this object. The precise meaning

* of "copy" may depend on the class of the object. The general

* intent is that, for any object {@code x}, the expression:

* <blockquote>

* <pre>

* x.clone() != x</pre></blockquote>

* will be true, and that the expression:

* <blockquote>

* <pre>

* x.clone().getClass() == x.getClass()</pre></blockquote>

* will be {@code true}, but these are not absolute requirements.

* While it is typically the case that:

* <blockquote>

* <pre>

* x.clone().equals(x)</pre></blockquote>

* will be {@code true}, this is not an absolute requirement.

* <p>

* By convention, the returned object should be obtained by calling

* {@code super.clone}. If a class and all of its superclasses (except

* {@code Object}) obey this convention, it will be the case that

* {@code x.clone().getClass() == x.getClass()}.

*<p>

* By convention, the object returned by this method should be independent
* of this object (which is being cloned). To achieve this independence,

* it may be necessary to modify one or more fields of the object returned
* by {@code super.clone} before returning it. Typically, this means

* copying any mutable objects that comprise the internal "deep structure”
* of the object being cloned and replacing the references to these

* objects with references to the copies. If a class contains only

* primitive fields or references to immutable objects, then it is usually

* the case that no fields in the object returned by {@code super.clone}

* need to be modified.

* <p>

* The method {@code clone} for class {@code Object} performs a

* specific cloning operation. First, if the class of this object does

* not implement the interface {@code Cloneable}, then a

* {@code CloneNotSupportedException} is thrown. Note that all arrays

* are considered to implement the interface {@code Cloneable} and that
* the return type of the {@code clone} method of an array type {@code T[]}
* is {@code T[J} where T is any reference or primitive type.

* Otherwise, this method creates a new instance of the class of this

* object and initializes all its fields with exactly the contents of

* the corresponding fields of this object, as if by assignment; the

* contents of the fields are not themselves cloned. Thus, this method

* performs a "shallow copy" of this object, not a "deep copy" operation.

* <p>

* The class {@code Object} does not itself implement the interface

* {@code Cloneable}, so calling the {@code clone} method on an object
* whose class is {@code Object} will result in throwing an

* exception at run time.

* @return a clone of this instance.

* @throws CloneNotSupportedException if the object's class does not

*

support the {@code Cloneable} interface. Subclasses

*

that override the {@code clone} method can also

*

throw this exception to indicate that an instance cannot
* be cloned.

* @see java.lang.Cloneable

*/

protected native Object clone() throws CloneNotSupportedException;

ZEREEA T TAER RN . Ty SRR

GITER AN REIA . ZHERE “BIA” T2 R,

SFAEAR RIS, —BeRUEFH KR E L
x.clone() !=x MIZERA true »

x.clone().getClass() == x.getClass() HIZEA true .

B T et AN 5] Y K

x.clone().equals(x) HI45REAZ true . XWARIRHIZERK.

IR, IR B R S ZEE A super.clone RECRMIEGE . AR —DMRAERFAERIE (BT Object) #B
BIEXANAE, B4 xclone().getClass() == x.getClass() K Far.

LIS, 3R BRI BNLZ A AR 0 S AT o

N T PR FPRSLNE, JEBNZAE M super.clone 15EI¥E UG SRR Bl 2 /i, BEZont A BRI E KO AT AR B
O R A T 17 52 B RIS B 51 .

IR A RRAEEEALR N LB R A AR RIS A, ZAEOLT, super.clone R[AIHIX RAFE
BB

WRFEA clone HREFIZKREFE LI Cloneable #:M¥ i CloneNotSupportedException .
EETA FIEA X RESERIASLIL T Cloneable #:1H .
ZR SO ZZRIH E], JEVIE T B R . BUX R A G IFASE A clone .

PR R 7 i S B AR AR e P8 DL T AS AR FE UL

DI BATTRT L T AR 21, % DURFIR 81 S HRHT A SE, 2% SEA IR 51 SRR GAL =
RAE DU 2 3R [B1Z SR HET RO S, R SE Y 5| FH SRR PRt 2 45 DL 5

IR —FUTER IR, HPE DUANERSE DL E B XA T3 T 5l SRR R =,

M RN
% . SRR
Bt STIZROX] Ear S -
%
; ' :
3| ANE 2| At 2| AxtE

N T A RS DL, AL ARl
BT BN R

@Data
public class Order implements Cloneable {

private Long id;
private String orderNo;
private List<ltem> itemList;

@Override
public Order clone() {
try {
return (Order)super.clone();
} catch (CloneNotSupportedException ignore) {
I A= 3% 5L
}

return null;

}
}

JBEiL Object 211 clone BREMIFEBRERAIT R WRFEA clone REIIEEA I Cloneable MG Cl
oneNotSupportedException -

K 252 Cloneable #:11.
H'H clone REUENT AN, FikxE SN public .
REME IR E SCNE P i B R BRI G 28T (OR28)

XEBL T (Effective Java)] ltem 11 F TR E 1 3:

Never make the client do anything the library can do for the client.

AEAER P o R AR TSR AT LA B e R

FATN L % DG 5 AR -

public class OrderMocker {

public static Order mock() {
Order order = new Order();
order.setld(1L);
order.setOrderNo("abcdefg");
List<ltem> items = new ArrayList<>();
ltem item = new ltem();
item.setld(OL);
item.setltem|d(OL);
item.setName(" (Fi B 2 Javalt &k FMF) FEMRZEUREAE");
item.setDesc("fif b #E");
items.add(item);
order setltemList(items);
return order;

}

}

@Test

public void shallowClone() {
Order order = OrderMocker.mock();
Order cloneOrder = order.clone();

assertFalse(order == cloneOrder);
assertTrue(order.getltemList() == cloneOrder.getltemList());

TR T LU, AESE T clone MIELAIERE, UESE T ¥H5 NUKERI.

IR DUG, R R IR VT 55 20 5w B BT B S kA 7D

PRl bt SRS P e ¥ UL, B 2 dE DT B R i SR, IR AR ARIT S R R SR B 2 R B .

N T IR IER A DUARYE DR, BATRASC AR R AT 2R
WP A REPIMREE T, BAREWAARMRETT X, ERIE R KSR R A, ANER2E
RETRANRGETT HEN, RHZSCH I T IS EEG M ELRN .
WL BATREIZEA SRS CE BRI A E) £ 57350 B EATRENG, wte] 75 20 B A7 A0 R A R H 3%,
X S SRAB AN JF 46 S A

3. R L s Bl 5 3

EIREHE ULRENS SCILHE DL ThRE, (ERE P LA 51 ISR R R A A AR IR 2 1, B SO v e 5 UM LR

M 28 TR AR A U 22—, AR S BRR #5 DA R e Ty s 2

3.1 FahR$E N

@Data
public class Order implements Cloneable {

private Long id;
private String orderNo;

private List<ltem> itemList;

@Override
public Order clone() {
try {
Order order = (Order) super.clone();
it (id = null) {
order.id = new Long(id);
}
if (orderNo != null) {
order.orderNo = new String(orderNo);

}

if (itemList != null) {
List<ltem> items = new ArrayList<>();
for (kem each : itemList) {
ltem item = new ltem();
Long id = each.getld();
if(id = null){
item.setld(new Long(id));
}
Long itemld = each.getltemld();
if(itemld = null){
item setltemld(new Long(itemlid));
}
String name = each.getName();
if(name != null){
item.setName(new String(name));
}
String desc = each.getDesc();
if(desc = null){
item.setDesc(new String(desc));
}
items.add(item);
}
order setltemList(items);
}
return order;
} catch (CloneNotSupportedException ignore) {

return null;

¥ NI super.clone &4 7T X ## x.clone().getClass() == x.getClass() -

S5, BiiEA Order 251 clone BRECED W SElsEE L.

H T PR ORI A BT) 51 FH SIS 2R) Jo 28 R A 0 SR s BUBT R (KR 5, DRI S SRAB EA % DR R A T i 3135
JEUGAT RS SRR i BRI AN 2 R BRI

I3 T P BT MR B IE -

@Test

public void deepClone() {
Order order = OrderMocker.mock();
Order cloneOrder = (Order) order.clone();

assertFalse(order == cloneOrder);
assertFalse(order.getltemList() == cloneOrder.getltemList());

TR
3.2 Fr 445 5\
RIS RRATHEE) T SUHAR T SURC IR, HEE) T 51 0 B T S L RS L

Fe LB A UG X RN T, AN RE AR Java X5, KRR SRR T FIAL IR % A2 BCE.
AR

PRI T DAASE FH 2 i U 281 66 P 2 A A B B4 T 3R SEBILIAR % DL
3.21 B UFFIML T Em %

AR IATANE T IR ¥ VUK — B e s BURT) jar A8, W RAZE B 0 H Hh A Bloes Guian AR H g 5 #5 DL BB

ZN LA T IS

e
* IDKF 214t 5 2 #% I
*/
public static <T> T deepClone(T origin) throws IOException, ClassNotFoundException {
ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
try (ObjectOutputStream objectOutputStream = new ObjectOutputStream (outputStream);) {
objectOutputStream.writeObject(origin);
objectOutputStream flush();
}
byte[] bytes = outputStream toByteArray();
try (ByteArraylnputStream inputStream = new ByteArraylnputStream (bytes);) {
return JdkSerialUtil.readObject(inputStream);
}
}

FAT AL A A T GGG 5

MR B BATR LLIE A 21, it 07 7% 5 AT BT B S8 — e IR R

P public cla

>

Order order
order.setOrderNo("first");

executorService. cute(e

clone.set

executorService.

Variables Memoaory

_active th E1ass

emList=[Item(i

WEVERNZ: IEWiHE AT, Java [FAIML TR E S Serializable B0, 1 BACRAZ K5
3.2.2 commons-lang3 {15 %11k T B. 2%
BATAT LAFI I E F5) e LR E R DRSS ERE D, #eaERiERT.

A LM#E A commons-lang3 (3.7 A FFML T E3E: org.apache.commons.lang3.SerializationUtils#clone .

FREARH] 5

serialUtil
Order order = OrderMocker.mock
VK 3 e
Order cloneOrder = SerializationUtils.clone(order

assertFalse(order == cloneOrder
assertFalse(order.getltemList() == cloneOrder.getltemList

AT S PR R0, FAT2A ST RRA B LR, iy HZ R BT BLAR .
T8 ey SEBRER 8 UL 2

L A BA T IS -

[
* <p>Deep clone an {@code Object} using serialization.</p>
* <p>This is many times slower than writing clone methods by hand
* on all objects in your object graph. However, for complex object
* graphs, or for those that don't support deep cloning this can
* be a simple alternative implementation. Of course all the objects
* must be {@code Serializable}.</p>
* @param <T> the type of the object involved
* @param object the {@code Serializable} object to clone
* @return the cloned object
* @throws SerializationException (runtime) if the serialization fails
*/
public static <T extends Serializable> T clone(final T object) {
if (object == null) {
return null;
}
final byte[] objectData = serialize(object);
final ByteArraylnputStream bais = new ByteArraylnputStream(objectData);

try (ClassLoaderAwareObjectinputStream in = new ClassLoaderAwareObjectinputStream(bais,
object.getClass().getClassLoader())) {
I
* when we serialize and deserialize an object,
* it is reasonable to assume the deserialized object
* is of the same type as the original serialized object
*/
@SuppressWarnings("unchecked") // see above
final T readObject = (T) in.readObject();
return readObject;

} catch (final ClassNotFoundException ex) {
throw new SerializationException("ClassNotFoundException while reading cloned object data”, ex);

} catch (final IOException ex) {
throw new SerializationException("|OException while reading or closing cloned object data", ex);

i R [FME 2 BIR <T extends Serializable> AJ LA & 2 800t R T BSLHUF Flb B O .
ZRBOT RS TRV, 1R DU REA I B T3S clone J7iERR & .
KA LAk B2 TV 1) 7 e B b B R S 2407

T IERS) AT BRATR I, Zr kR A E g Java R AIAGHT R FIAL 7 R EL.
3.2.3 JSON 41k

BABE AT LLERE JSON 7814k 77 2R iR #4 Ul o

THRATFIA Google [Gson FE (2.8.5 fiA) , SzHIET JSON TR I .

B R BATR RS VU7 B 3 B4 DU T Ak

o
* GsonJy 3 SEHLER S U
*/

public static <T> T deepCloneByGson(T origin, Class<T> clazz) {
Gson gson = new Gson();
return gson.fromJson(gson.toJson(origin), clazz);

il P B A P A) TR 7 B

withGson
Order order = OrderMocker.mock
Il gson)F 44k 77 X
Order cloneOrder = CloneUtil.deepCloneByGson(order, Order

assertFalse(order == cloneOrder
assertFalse(order.getltemList() == cloneOrder.getltemList

1 JSON J7 4L 7 S BLIRHE DU Ak 2, PERELL Java J7 4k 7 sUBE i, 58 S B R AN EER T BT 5 LR R
Atk (RE) HEKIFIIMeEEN.

AT AT LU F AT T VF 21K Hessian Al Kryo P ARSI, 15 KK AATH 3.

b Gson LIRSS WU T BB 4, FRHRARIL T A EAET 7 b LA) S8 % T LA e e i 3 R
KA CEA - S B AURSBETE) 58— AR 10.13 BAE I R BT R —E

e, EUANE RO AR E R LA ER S D107 K, AU R H B AR B A M TR KA, ERM.

4. 45

AT YRR 7 EAE DUNTRSE DU, AR ZEC, LRk #E DURIERPE DL sy 3.

TR IRR T AR BEAE SRR A B TURR 73 JR U, PRIR AT 18 B DX A S BT A i A A

5. iR 5 el

WHHE XK, Fi 57 5 SR DRSS DL,

R

FTEEMEE Java X KkE. Java FF R FM 1.5.0) 41k, 2019. 10
TERE - dEEEE AL 0

[25] Joshua Bloch. {Effective Java : Second Edition) .2008

	1. 前言
	2. 概念介绍
	2.1 拷贝 / 克隆的概念
	2.2 为什么需要拷贝方法？
	2.3 什么是浅拷贝？浅拷贝和深拷贝的区别是什么？

	3. 深拷贝的实现方式
	3.1 手动深拷贝
	3.2 序列化方式
	3.2.1 自定义序列化工具函数
	3.2.2 commons-lang3 的序列化工具类
	3.2.3 JSON 序列化

	4. 总结
	5. 课后题
	参考资料

