11 ArrayListf¥jsubListflArraysftjasList >]

g 2019-11-11 09:57:45

LR, BAETE, L84S, Hofdt. —EHR

1.0 &

[

Il

(TN % 11-12 51 % Arraylist) subList A1 Arrays.asList() SHT 7 1 Tk 1:

[5%64)) ArrayList) subList £ RA[amE6EL Arraylist, #0<Pit ClassCastException 7 %, El

java.util.RandomAccessSubList cannot be cast to java.util. ArrayList.

(5511 7 SubList 57, mEGEEN FEATTRIIMEMER, B SBTIRKE . B, MR- 4E

ConcurrentModificationException 7 # .

(o] (FH THEZE Arrays.aslist () fEEARBBEAR, ARefIHIEMESHIN T, BER
add/remove/clear J5 %4l UnsupportedOperationException ¥

IR FRATE 25 T LA 7]

o (T A BEX AME?
o XN FA TGS A A R RN ?

TR A L R I 1)

2. 197853 Hr

file:///read/55/article/1147
file:///read/55/article/1149

WA ATH RS, MERZ Nl 2R B i A R A R S Tk e R A T .
T BAT AR AT 1 K S ST

2.1 ArrayList] subList 43 #t

211 KK
i) IDEA FIfR BRI TR, FATT LB ZRERER.

HARPIR: 7E SubList 28 £, 1+ “Diagrams” -> “Show Diagram” .

dpé Iterable

@ & AbstractCollection

@ a AbstractList dp @ RandomAccess

@ & SubList @ 8 ArraylList

ALAIE | SubList A1 ArrayList HIZkHR A RIEF ML, #LI T RandomAccess #: 0 4k7K H AbstarctList.
SubList Fl ArraylList J¥#%H %KL R, KL “ Araylist) SubList FARESRFEN Arraylist .

IR EFRATN SubList AT —/MNEARR T, XKEONIRATEED 22 25T R AREF (5L

2.2.2 DEMO F1i ki

WRARZE I FEAN R, RIFITEZ — RS — A /N B DEMO KWL 5347 .

BRI IRAT R, 5 — AN]SR AR AR Fr BOR Jar IR 4 5 6 17«

expected = ClassCastException.class
public void testClassCast
List<Integer> integerList = new ArrayList<>
integerList.add
integerList.add
integerList.add
List<Integer> subList = integerList.subList

11 5%
ArrayList<Integer> cast = (ArrayList<Integer>) subList

FATTIE AT LU I X) 2 i 2 Th BE SR U6 I FAT T A i

R AR “Variables” & HIEFAEWFFRAINT %, 4N sublist , #RJ5 45 5% “Evaluate Expression”, i AREZT
ITHRIEN, BELR:

st = new Arrayl

subList = i

(Arrayl ntege sublist;

ExpresSion:

subList instanceof Ar ra':_.-‘LisT]

Result:
result = false

L] G

Variables
this =
integerList =
sublList =

MR R R A4 BB AT LS HE B, subList JEAR& ArrayList 2% 245,

FATE — MRS BOR I IE DI RE -

testSubList
List<String> stringList = ArrayList<>
stringList.add("/%"
stringList.add(":&"
stringList.add("/)\"
stringList.add(" 4"
stringList.add(""
stringList.add ("’
stringList.add(" A"

L
stringList.add(" 1-"

List<String> subList = stringList.subList
System.out.printin("1-%/4: " + subList.toString
System.out.printin(" 1~ 71| /2 <)% " + subList.size

subList.set(1, "7: 7"
System.out. printin("1- %5 " + subList.toString
System.out.printin("J5 4 41 4<: " + stringList.toString

ChRESE AR

THER: [#h,]

THIRKE: 2

THIR: [h FH]

. (B, . 9h, BE, A, RO, F]

LA R, 0T HIRAME SR AR UG 517 T .
WA NEBET FFIIRIZRGIN 1 BERZR IR IFG IR 4 DITRWE? J5 R AT 2 Hr AR .
2.1.3 P 53 T

java.util. ArrayList#subList J5fZ:

[

* Returns a view of the portion of this list between the specified

* {@code fromindex}, inclusive, and {@code tolndex}, exclusive. (If

* {@code fromIndex} and {@code tolndex} are equal, the returned list is

* empty.) The returned list is backed by this list, so non-structural

* changes in the returned list are reflected in this list, and vice-versa.

* The returned list supports all of the optional list operations.

* <p>This method eliminates the need for explicit range operations (of

* the sort that commonly exist for arrays). Any operation that expects

* alist can be used as a range operation by passing a subList view

* instead of a whole list. For example, the following idiom

* removes a range of elements from a list:

* <pre>

* list.subList(from, to).clear();

* </pre>

* Similar idioms may be constructed for {@link #indexOf(Object)} and

* {@link #lastindexOf(Object)}, and all of the algorithms in the

* {@link Collections} class can be applied to a sublList.

* <p>The semantics of the list returned by this method become undefined if

* the backing list (i.e., this list) is <i>structurally modified</i> in

* any way other than via the returned list. (Structural modifications are

* those that change the size of this list, or otherwise perturb it in such

* a fashion that iterations in progress may yield incorrect results.)

* @throws IndexOutOfBoundsException {@inheritDoc}

* @throws lllegalArgumentException {@inheritDoc}

*/

public List<E> subList(int fromIndex, int tolndex) {
subListRangeCheck(fromindex, tolndex, size);
return new SublList(this, 0, fromIndex, tolndex);

IR] B BT VE EEA WA 0E . —DREERIITERE, — MG TIR R .

TR BAT AT DL B O R TR

INEIR P AT S fromindex (£45%) M tolndex (AELE) ZIEHTERME . WIRMADRGIHE LR] —

NEFIZK.

BRSR X list (5N 0T R BEAT A, ATLLA subList, -

list.subList(from, to).clear();

FRARTS T B R BB i AR 2 SR B SR B R

BATEF E S java.util ArrayList. SubListiset JEfiG:

public E set(int index, E e) {
rangeCheck(index);
checkForComodification();

E oldValue = ArrayList.this.elementData(offset + index);
ArrayList.this.elementDataloffset + index| = e;
return oldValue;

A ULE B HE I %, SRR 5 28I offset + index THEAFHKAT,

XHH java.util. ArrayList#elementData Bl A 54651 2476 70 & OB

SubList(AbstractList<E> parent,
int offset, int fromIindex, int tolndex) {
this.parent = parent;
this parentOffset = fromIndex;
this.offset = offset + fromIndex;
this.size = tolndex - fromIndex;

this.modCount = ArrayList.this.modCount; // i+ LA &2 | ArrayListi’) modCount

AR AR R BB AT RE, X B E (offset) IME N fromindex Z4L.

PRI /NSRBI = TP AIRIR G081 BB R SR A6 51 R M5 4 ANTTERIE? = BHEA S HM 1.

FAME SubList MIMERET, 2% Amraylist) modCount T{fE%: SubList) modCount

FRATTHE [B L hHLE -

551 78 sublist 357, miEGEEXN FEGTTRINHMEMER, B2 SBTIRNE . B, MR- 4E

ConcurrentModificationException 7 # .

FA1FE java.util. ArrayList#tadd(E) FVERD:

Jx*

* Appends the specified element to the end of this list.

*

* @param e element to be appended to this list

* @return <tt>true</tt> (as specified by {@link Collection#add})
*/

public boolean add(E e) {

ensureCapacitylnternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;

}

AU LB e R AR TR, #ax modCount #EATIZH.

FAIEA SubList H #O K%, f0 java.util ArrayList.SubList#fget 1 java.util ArrayList.SubList#size :

public E get(int index
rangeCheck(index
checkForComaodification
return ArrayList.this .elementData(offset + index

public int size
checkForComodification
return this.size

java.util. ArrayList.SubList#checkForComodification e

private void checkForComodification
if (ArrayList.this.modCount ! = this.modCount
throw new ConcurrentModificationException

MM LT SubList FIfiG BT LAE S|, Sublist &l 7 ArrayList 1) modCount, [t x 5 & % i1 3 19 ok
M Bg #2580 Araylist B modCount B84k, THFFIRMET . . MBRE XS AG)# SubList BT
modCount & —%, RN HHSA—E, FEMHE ConcurrentModificationException (FRAEHFH).

Z I Em L E PR BATBAERR T 7

2.2 Arrays.asList () 7 #7
2.2.1 Kk

FIRITH —FE, EHEREK T Arrays.aslist() FIIR AR,

dpa Iterable

dpa Collection

@ a AbstractCollectior

dpa Serializable @ a AbstractlList |d#pa RandomAccess

@ a Arraylist a8 Arraylist

RINZ java.util. Arrays.ArrayList (F511) #1 java.util.ArrayList (£ , HI4k& & RIEE ML, 464 H java.util. Abstr

actList .

FATHTIF 2 A1) “Method” Tfie, X L 1) 3 22 pR 20D 57 (7 -

Va
9 a
@8
9 a
@8
@ a
@ a
@ a
9 a
@8
9 a
@8
@ a
@ a
@ a
9 a
@8
9 a
@8
@ a
@ a
@ a
9 a
@8
9 a
@8
@ a
@ a
@ a
9 a
@8

FATAT LATE 2

2.2.2 PGS Kk

Arraylist

trimToSize() void
ensureCapacity(int) void
size() int
isEmpty() boolean
contains(Object) boolean
indexOf(Object) int
lastindexOf (Object) int
clone() Object
toArray() Object[]
toArray(T[]) T[]
get(int) E
set(int, E) E
add(E) boolean
add(int, E) void
remove(int) E
remove(Qbject) boolean
clear() void
addAll{Collection<? extends E>) boolean
addAll{int, Collection<? extends E>) boolean
removeAll(Collection<?>) boolean
retainAll(Collection<?>) boolean
listlterator(int) Listlterator<E>
listlterator() Listlterator<E>
iterator() Iterator<E>
subLlist(int, int) List<E>
forEach(Consumer<? super E>) void
spliterator() Spliterator<E>
removelf(Predicate<? super E>) boolean
replaceAll(UnaryOperator<E>) void

sort(Comparator<? super E>) void

FERRBA0H Arrays.asList() FITERY:

Arraylist

size() int
toArray() Object[]
toArray(T[])

get(int)

set(int, E)

indexOf (Object)

contains({Object) boolean
spliterator() Spliterator<E>
forEach(Consumer<? super E>) void
replaceAll(UnaryOperator<E>) void

sort(Comparator<? super E>) void

java.util. Arrays.ArrayList (5 1U) H&FE AN —F ES add . remove 3.

[
* Returns a fixed-size list backed by the specified array. (Changes to
* the returned list "write through" to the array.) This method acts

* as bridge between array-based and collection-based APIs, in

* combination with {@link Collection#toArray}. The returned list is

* serializable and implements {@link RandomAccess}.

*

* <p>This method also provides a convenient way to create a fixed-size
* list initialized to contain several elements:

* <pre>

* List<String> stooges = Arrays.asList("Larry", "Moe", "Curly");

* </pre>

*

* @param <T> the class of the objects in the array
* @param a the array by which the list will be backed
* @return a list view of the specified array
*/
@SafeVarargs
@SuppressWarnings("varargs")
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);

I YEREFRATRT A 20 1 10 2

A5 [T E AL KRB .
BITED A RIS & IR
ZITEAR G T B E 2 AT RIE KSR KT ik

List stooges = Arrays.asList(“Larry”, “Moe”, “Curly”);

A IR DR A TR I K FI R .

RERY KR HRR IR EE, XA 7O A AN SRR IR R T R A SR AL
LEAMHNRE, BAILEE Abstacilist [add 1 remove AHIEE %L

java.util. AbstractList#add(int, E)

public void add(int index, E element) {
throw new UnsupportedOperationException();

java.util. AbstractList#remove

public E remove(int index) {
throw new UnsupportedOperationException();

A AR FRAESXHAEE, siail UnsupportedOperationException (AN SZIEHHERIERH)

BAIEEE java.util AbstractListiclear [T :

»

I
* Removes all of the elements from this list (optional operation).
* The list will be empty after this call returns.

*

* <p>This implementation calls {@code removeRange(0, size())}.

*

* <p>Note that this implementation throws an

* {@code UnsupportedOperationException} unless {@code remove(int
* index)} or {@code removeRange(int fromindex, int tolndex)} is

* overridden.

*

* @throws UnsupportedOperationException if the {@code clear} operation

*

is not supported by this list
*/

public void clear() {
removeRange(0, size());

}

MR MERAES remove(intindex) B removeRange(int fromindex, int tolndex) IRt <HiH Unsuppor

tedOperationException -
. FAMEBK
£ Java 1) 21l i, REMANA BT ERI, 3%, SMRIIEMER, LHERY M.

ERARZ GORHEGR T URIRGE R, (HIXFEE S TR, AR R M. B 75 SR SE A R BUBU F1

o

i N BUAE T 4602 ST MU A P BENS 8 /R SRR AR rp B U, KRR SR, SEALSC. @t NJRY b B R0t
T, XFEENREINIRZ], SRR R

FATFERE RIS T FBOFAER A — R, TEAE 2 Mt 7t 75 208 i R BRIt -

4. 2%

PAnp=m

AT B 4T TEED AT LA DEMO AR 77 % ArrayList 1) SubList [EEFI Arrays (1) aslist #E474>
Mt FEARYE A7 A T X FRATT 2= ST 3 K

AT E

1. ArrayList P9#38 SubList I ArrayList #WH 4& KR, KL EEHEEA Araylist .

2. Arraylist i) SubList ¥Ji&if1& N ArrayList) modCount, B %HESIRKIESESSBTHIRKmEF . 1
B MER 24 ConcurrentModificationException 5 .

3. Arrays.asList() %2R HLE I BAMIE EKESIITIRE, XRBER I B R A M.

TR RN R (1 E RS 55
5. W54k

(T 28 11 TR AT AR A —FE:

(5511 ASZEAE foreach 53 Bit47 50 E A remove/add #:1E. remove JL &G A lterator 7720, WK
HAE, FTEX lterator X G040 .

MARERT, N4 RELE foreach 1R B 4T 70 E I remove/add #:1E. remove JCRIE(ER Iterator J7z"?
HRREB A NEITERINEE LR FHFR— .

%

<

W
s

FTEREEYS Java tEX IR, Java R T 1.5.0) #1lifk. 2019. 11-12

	1. 前言
	2. 问题分析
	2.1 ArrayList 的 subList 分析
	2.1.1 类图法
	2.2.2 DEMO 和调试大法
	2.1.3 源码分析

	2.2 Arrays.asList () 分析
	2.2.1 类图法
	2.2.2 源码大法

	3. 学习的启发
	4. 总结
	5. 课后练习
	参考资料

