
更新时间：2019-11-11 09:57:45

11 ArrayList的subList和Arrays的asList学习

1. 前言

《手册》 第 11-12 页 对 ArrayList  的 subList  和 Arrays.asList()  进行了如下描述 1：

【强制】ArrayList 的 subList 结果不可强转成 ArrayList，否则会抛出 ClassCastException 异 常，即

java.util.RandomAccessSubList cannot be cast to java.util.ArrayList。

【强制】在 SubList 场景中，高度注意对原集合元素的增加或删除，均会导致子列表的遍历、增加、删除产生

ConcurrentModificationException 异常。

【强制】使用工具类 Arrays.asList () 把数组转换成集合时，不能使用其修改集合相关的方法，它的

add/remove/clear 方法会抛出 UnsupportedOperationException 异常。

那么我们思考下面几个问题：

《手册》为什么要这么规定？

这对我们编码又有什么启发呢？

这些都是本节重点解答的问题。

2. 问题分析

老骥伏枥，志在千里； 烈士暮年，壮心不已。 ——曹操

file:///read/55/article/1147
file:///read/55/article/1149


通过前面章节的学习，相信很多人已经对通过使用类图、阅读源码和源码的注释等来学习方法已经轻车熟路了。

下面我们根据本节话题继续实战。

2.1 ArrayList 的 subList 分析
2.1.1 类图法

通过 IDEA 的提供的类图工具，我们可以查看该类的继承体系。

具体步骤：在 SubList  类中 右键，选择 “Diagrams” -> “Show Diagram” 。

可以看到 SubList  和 ArrayList  的继承体系非常类似，都实现了 RandomAccess  接口 继承自 AbstarctList。

SubList  和 ArrayList  并没有继承关系，因此 “ ArrayList  的 SubList  并不能强转为 ArrayList  。

通过类图我们对 SubList  有了一个整体的了解，这将为我们进步学习打下很好的基础。

2.2.2 DEMO 和调试大法

如果想学习某个特性，最好的方法之一就是写一个小段 DEMO 来观察分析。

因此我们下面，写一个简单的测试代码片段来验证转换异常问题：

我们还可以使用调试的表达式功能来验证我们的想法。

@Test(expected = ClassCastException.class)
public void testClassCast() {
    List<Integer> integerList = new ArrayList<>();
    integerList.add(0);
    integerList.add(1);
    integerList.add(2);
    List<Integer> subList = integerList.subList(0, 1);
    
    // 强转
    ArrayList<Integer> cast = (ArrayList<Integer>) subList;
}



在调试界面的 “Variables” 窗口选择想研究的对象，如 subList  ，然后右键选择 “Evaluate Expression”，输入想查执

行的表达式，查看结果：

从上面的表达式的结果也可以清晰地看出， subList  并不是 ArrayList  类型的实例。

我们写一个代码片段来验证功能：

输出结果为：

子列表：[孙，李]

子列表长度：2

子列表：[孙，慕容]

原始列表：[赵，钱，孙，慕容，周，吴，郑，王]

@Test
public void testSubList() {
        List<String> stringList = new ArrayList<>();
        stringList.add("赵");
        stringList.add("钱");
        stringList.add("孙");
        stringList.add("李");
        stringList.add("周");
        stringList.add("吴");
        stringList.add("郑");
        stringList.add("王");

        List<String> subList = stringList.subList(2, 4);
        System.out.println("子列表：" + subList.toString());
        System.out.println("子列表长度：" + subList.size());

        subList.set(1, "慕容");
        System.out.println("子列表：" + subList.toString());
        System.out.println("原始列表：" + stringList.toString());
 }



可以观察到，对子列表的修改最终对原始列表产生了影响。

那么为啥修改子序列的索引为 1 的值影响的是原始列表的第 4 个元素呢？后面将进行分析和解读。

2.1.3 源码分析

java.util.ArrayList#subList  源码：

通过源码可以看到该方法主要有两个核心逻辑：一个是检查索引的范围，一个是构造子列表对象。

通注释我们可以学到核心知识点：

该方法返回本列表中 fromIndex （包含）和 toIndex （不包含）之间的元素视图。如果两个索引相等会返回一

个空列表。

如果需要对 list 的某个范围的元素进行操作，可以用 subList，如：

list.subList(from, to).clear();

任何对子列表的操作最终都会反映到原列表中。

我们查看函数 java.util.ArrayList.SubList#set  源码：

/**
 * Returns a view of the portion of this list between the specified
 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
 * {@code fromIndex} and {@code toIndex} are equal, the returned list is
 * empty.)  The returned list is backed by this list, so non-structural
 * changes in the returned list are reflected in this list, and vice-versa.
 * The returned list supports all of the optional list operations.
 *
 * <p>This method eliminates the need for explicit range operations (of
 * the sort that commonly exist for arrays).  Any operation that expects
 * a list can be used as a range operation by passing a subList view
 * instead of a whole list.  For example, the following idiom
 * removes a range of elements from a list:
 * <pre>
 *      list.subList(from, to).clear();
 * </pre>
 * Similar idioms may be constructed for {@link #indexOf(Object)} and
 * {@link #lastIndexOf(Object)}, and all of the algorithms in the
 * {@link Collections} class can be applied to a subList.
 *
 * <p>The semantics of the list returned by this method become undefined if
 * the backing list (i.e., this list) is <i>structurally modified</i> in
 * any way other than via the returned list.  (Structural modifications are
 * those that change the size of this list, or otherwise perturb it in such
 * a fashion that iterations in progress may yield incorrect results.)
 *
 * @throws IndexOutOfBoundsException {@inheritDoc}
 * @throws IllegalArgumentException {@inheritDoc}
 */
public List<E> subList(int fromIndex, int toIndex) {
    subListRangeCheck(fromIndex, toIndex, size);
    return new SubList(this, 0, fromIndex, toIndex);
}



可以看到替换值的时候，获取索引是通过 offset + index  计算得来的。

这里的 java.util.ArrayList#elementData  即为原始列表存储元素的数组。

通过子列表的构造函数我们知道，这里的偏移量 ( offset  ) 的值为 fromIndex  参数。

因此上小节提到的：** 为啥子序列的索引为 1 的值影响的是原始列表的第 4 个元素呢？** 的问题就不言自明了。

另外在 SubList  的构造函数中，会将 ArrayList  的 modCount  赋值给 SubList  的 modCount  。

我们再回到规约中规定：

【强制】在 subList 场景中，高度注意对原集合元素的增加或删除，均会导致子列表的遍历、增加、删除产生

ConcurrentModificationException 异常。

我们看 java.util.ArrayList#add(E)  的源码：

可以发现新增元素和删除元素，都会对 modCount  进行修改。

我们再看 SubList  的 核心的函数，如 java.util.ArrayList.SubList#get  和 java.util.ArrayList.SubList#size  ：

public E set(int index, E e) {
    rangeCheck(index);
    checkForComodification();
    E oldValue = ArrayList.this.elementData(offset + index);
    ArrayList.this.elementData[offset + index] = e;
    return oldValue;
}

SubList(AbstractList<E> parent,
        int offset, int fromIndex, int toIndex) {
    this.parent = parent;
    this.parentOffset = fromIndex;
    this.offset = offset + fromIndex;
    this.size = toIndex - fromIndex;
    this.modCount = ArrayList.this.modCount; // 注意：此处复制了 ArrayList的 modCount
}

/**
 * Appends the specified element to the end of this list.
 *
 * @param e element to be appended to this list
 * @return <tt>true</tt> (as specified by {@link Collection#add})
 */
public boolean add(E e) {
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    elementData[size++] = e;
    return true;
}



都会进行修改检查：

java.util.ArrayList.SubList#checkForComodification

而从上面的 SubList  的构造函数我们可以看到， SubList  复制了 ArrayList 的 modCount，因此对原函数的新增或

删除都会导致 ArrayList  的 modCount  的变化。而子列表的遍历、增加、删除时又会检查创建 SubList  时的

modCount 是否一致，显然此时两者会不一致，导致抛出 ConcurrentModificationException  (并发修改异常)。

至此上面约定的原因我们也非常明了了。

2.2 Arrays.asList () 分析
2.2.1 类图法

和前面一样，查看类图来了解 Arrays.asList()  的返回类型。

发现该 java.util.Arrays.ArrayList  (右侧) 和 java.util.ArrayList  （左侧），的继承体系非常相似，继承自 java.util.Abstr

actList  。

public E get(int index) {
    rangeCheck(index);
    checkForComodification();
    return ArrayList.this.elementData(offset + index);
}

public int size() {
    checkForComodification();
    return this.size;
}

private void checkForComodification() {
    if (ArrayList.this.modCount != this.modCount)
        throw new ConcurrentModificationException();
}



我们打开左上角的 “Method” 功能，对比两者的主要函数的异同：

我们可以清楚地发现， java.util.Arrays.ArrayList  (右侧) 并没有像左侧一样 重写 add  、 remove  函数。

2.2.2 源码大法

接下来我们分析 Arrays.asList()  的源码：



通过注释我们可以得到下面的要点：

返回基于特定数组的定长列表。

该方法扮演数组到集合的桥梁。

该方法也提供了包含多个元素的定长列表的方法：

List stooges = Arrays.asList(“Larry”, “Moe”, “Curly”);

可看出此方法的功能是为了返回定长的列表。

这里的” 定长列表 “的描述非常重要，这也就解释了为什么不支持增加和删除元素的原因。

结合前面的类图，我们去查看 AbstactList  的 add  和 remove  相关函数：

java.util.AbstractList#add(int, E)

java.util.AbstractList#remove

可知如果子类不重写这两个函数，就会抛出 UnsupportedOperationException（不支持的操作异常）。

我们再看看 java.util.AbstractList#clear  的源码：

/**
 * Returns a fixed-size list backed by the specified array.  (Changes to
 * the returned list "write through" to the array.)  This method acts
 * as bridge between array-based and collection-based APIs, in
 * combination with {@link Collection#toArray}.  The returned list is
 * serializable and implements {@link RandomAccess}.
 *
 * <p>This method also provides a convenient way to create a fixed-size
 * list initialized to contain several elements:
 * <pre>
 *     List&lt;String&gt; stooges = Arrays.asList("Larry", "Moe", "Curly");
 * </pre>
 *
 * @param <T> the class of the objects in the array
 * @param a the array by which the list will be backed
 * @return a list view of the specified array
 */
@SafeVarargs
@SuppressWarnings("varargs")
public static <T> List<T> asList(T... a) {
    return new ArrayList<>(a);
}

public void add(int index, E element) {
    throw new UnsupportedOperationException();
}

public E remove(int index) {
    throw new UnsupportedOperationException();
}



通过注释可知 如果没有重写 remove(int index)  或 removeRange(int fromIndex, int toIndex)  同样也会抛出 Unsuppor

tedOperationException  。

3. 学习的启发

在 Java 的学习过程中，大多数人都是通过看视频，读博客，搜索引擎搜索，买书等来学习知识。

但是很多资料都是告诉你结论，但这样容易浮于表面，知其然而不知其所以然。而源码、官方文档等才是权威的知

识。

希望从现在开始学习和开发中能够偶尔到感兴趣的类中查看源码，这样学的更快，更扎实。通过进入源码中自主研

究，这样印象更加深刻，掌握的程度更深。

我们同样发现学习的手段并非只有一种，往往多种研究方式结合起来效果最好。

4. 总结

本文通过类图分析、源码分析以及 DEMO 和调试的方式对 ArrayList  的 SubList  问题和 Arrays  的 asList  进行分

析。并根据分析阐述了对我们学习的启发。

本节的要点：

1. ArrayList  内部类 SubList  和 ArrayList  没有继承关系，因此无法将其强转为 ArrayList  。

2. ArrayList  的 SubList  构造时传入 ArrayList  的 modCount，因此对原列表的修改将会导致子列表的遍历、增

加、删除产生 ConcurrentModificationException 异常。

3. Arrays.asList()  函数是提供通过数组构造定长集合的功能，该函数提供数组到集合的桥梁。

下一节我们将讲述添加注释的正确姿势。

5. 课后练习

《手册》第 11 页 集合处理章节有这么一条规定：

/**
 * Removes all of the elements from this list (optional operation).
 * The list will be empty after this call returns.
 *
 * <p>This implementation calls {@code removeRange(0, size())}.
 *
 * <p>Note that this implementation throws an
 * {@code UnsupportedOperationException} unless {@code remove(int
 * index)} or {@code removeRange(int fromIndex, int toIndex)} is
 * overridden.
 *
 * @throws UnsupportedOperationException if the {@code clear} operation
 *         is not supported by this list
 */
public void clear() {
    removeRange(0, size());
}



 10 枚举类的正确学习方式 12 添加注释的正确姿势

【强制】不要在 foreach 循环里进行元素的 remove/add 操作。remove 元素请使用 Iterator 方式，如果并发

操作，需要对 Iterator 对象加锁。

那么问题来了，为什么 “不要在 foreach 循环里进行元素的 remove/add 操作。remove 元素请使用 Iterator 方式”？

请大家结合前面和本小节所学的内容自己实际动手研究一下。

参考资料

1. 阿里巴巴与 Java 社区开发者.《 Java 开发手册 1.5.0》华山版. 2019. 11-12 ��

}


	1. 前言
	2. 问题分析
	2.1 ArrayList 的 subList 分析
	2.1.1 类图法
	2.2.2 DEMO 和调试大法
	2.1.3 源码分析

	2.2 Arrays.asList () 分析
	2.2.1 类图法
	2.2.2 源码大法


	3. 学习的启发
	4. 总结
	5. 课后练习
	参考资料

