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"pool-1-thread-1" #11 prio=5 os_prio=31 tid=0x00007fa0964c 7000 nid=0x4403 waiting on condition [0x000070000db67000]

at java.lang.Thread.run(Thread java: 748)
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" R BT % 26 FE thread-2" #11 prio=5 os_prio=31 tid=0x00007fa0964c7000 nid=0x4403 waiting on condition [0x000070000db67000]

at java.lang.Thread.run(Thread java: 748)
RFEFEA AR BRI ?

I ERE AR, BRATTAT AP T S A LR T 2R, o — 2 [ AT AR A

L] SE LR ?

RENBIRGCEEA L, HEAER, BORMEHE, RERZHIE, FRAARRN, BT 7SR R T I 5K

BIREAGERAVEE R, A EATIPYE?

AT LLE ThreadPoolExecutor  [HIE 5k FIRE R, WiEREFHEH —A threadFactory S4(, @il HIREE
FERBFRA TR UAIE 1% S H0E NR R A 8 2R A2

BRI A.  java.util.concurrent. ThreadFactory , #IREH, oA 1AF UG :

Jxx

* Constructs a new {@code Thread}. Implementations may also initialize
* priority, name, daemon status, {@code ThreadGroup}, etc.

* @param r a runnable to be executed by new thread instance

* @return constructed thread, or {@code null} if the request to

* create a thread is rejected

*/

Thread newThread(Runnable r);
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@since
@author

f public interface ThreadFactory {
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[
* A{@link ThreadFactory} that sets names to the threads created by this factory. Threads created by this factory

* will take names in the form of the string <code>namePrefix + " thread-" + threadNum</code> where <tt>threadNum</tt> is the
* count of threads created by this type of factory.

*

* @author <a href="mailto:asanoujam@terracottatech.com">Abhishek Sanoujam</a>

*
public class NamedThreadFactory implements ThreadFactory {

private static Atomiclnteger threadNumber = new Atomicinteger(1);
private final String namePrefix;

private final boolean daemon;

[
* Constructor accepting the prefix of the threads that will be created by this {@link ThreadFactory}

*

* @param namePrefix Prefix for names of threads

*/

public NamedThreadFactory(String namePrefix, boolean daemon) {
this.namePrefix = namePrefix;
this.daemon = daemon;

}
e
* Constructor accepting the prefix of the threads that will be created by this {@link ThreadFactory}

*

* @param namePrefix

*

Prefix for names of threads

*/

public NamedThreadFactory(String namePrefix) {
this(namePrefix, false);

e
* Returns a new thread using a name as specified by this factory {@inheritDoc}
*/
public Thread newThread(Runnable runnable) {
final Thread thread = new Thread(runnable, namePrefix + " thread-" + threadNumber.getAndincrement());
thread.setDaemon(daemon);
return thread;
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I
* Creates a new {@code ThreadPoolExecutor} with the given initial

* parameters.

* @param corePoolSize the number of threads to keep in the pool, even

* if they are idle, unless {@code allowCoreThreadTimeOut} is set

* @param maximumPoolSize the maximum number of threads to allow in the
* pool

* @param keepAliveTime when the number of threads is greater than

*

the core, this is the maximum time that excess idle threads
* will wait for new tasks before terminating.

* @param unit the time unit for the {@code keepAliveTime} argument

* @param workQueue the queue to use for holding tasks before they are
* executed. This queue will hold only the {@code Runnable}

* tasks submitted by the {@code execute} method.

* @param threadFactory the factory to use when the executor

* creates a new thread

* @param handler the handler to use when execution is blocked

because the thread bounds and queue capacities are reached
* @throws llegalArgumentException if one of the following holds:<br>

* {@code corePoolSize < 0}<br>
* {@code keepAliveTime < 0}<br>
* {@code maximumPoolSize <= 0}<br>

*

{@code maximumPoolSize < corePoolSize}
* @throws NullPointerException if {@code workQueue}
* or {@code threadFactory} or {@code handler} is null
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new lllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.acc = System.getSecurityManager() == null ?

null :

AccessController.getContext();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this keepAliveTime = unit.toNanos(keepAliveTime);
this threadFactory = threadFactory,
this.handler = handler;
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B RBATERHZORELZ —M execute JEAD:

[
* Executes the given task sometime in the future. The task
* may execute in a new thread or in an existing pooled thread.
* If the task cannot be submitted for execution, either because this
* executor has been shutdown or because its capacity has been reached,
* the task is handled by the current {@code RejectedExecutionHandler}.
* @param command the task to execute
* @throws RejectedExecutionException at discretion of
* {@code RejectedExecutionHandler}, if the task
* cannot be accepted for execution
* @throws NullPointerException if {@code command} is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
J
* Proceed in 3 steps:
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
intc = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (laddWorker(command, false))
reject(command);
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FAVE2S] java.util.concurrent. ThreadPoolExecutor#shutdown B4 :

[
* Initiates an orderly shutdown in which previously submitted
* tasks are executed, but no new tasks will be accepted.
* Invocation has no additional effect if already shut down.
* <p>This method does not wait for previously submitted tasks to
* complete execution. Use {@link #awaitTermination awaitTermination}
* to do that.
* @throws SecurityException {@inheritDoc}
*/
public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
advanceRunState(SHUTDOWN);
interruptldieWorkers();
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();

}

tryTerminate();
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The point is that the shutDown method refurns without waiting for the previously submitted tasks to complete,

but it still /ets them complete. You might want to think of it as a “start shutting down” method.

shutDown R &2 FEERAIESIMTM ERSILEHTIITEH) MAIBE . KA L2 AR
THEKI" FL

LRIEA L ERLRE, FERFKACESEY, KERAERIT.

LR TR M A% L SR O R B
MARNIKE S —A R, A (FMY AEIA Executors SRAIEELZEFENL?
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[
* Creates a thread pool that reuses a fixed number of threads
* operating off a shared unbounded queue, using the provided
* ThreadFactory to create new threads when needed. At any point,
* at most {@code nThreads} threads will be active processing
* tasks. If additional tasks are submitted when all threads are
* active, they will wait in the queue until a thread is
* available. If any thread terminates due to a failure during
* execution prior to shutdown, a new one will take its place if
* needed to execute subsequent tasks. The threads in the pool will
* exist until it is explicitly {@link ExecutorService#shutdown
* shutdown}.
* @param nThreads the number of threads in the pool
* @param threadFactory the factory to use when creating new threads
* @return the newly created thread pool
* @throws NullPointerException if threadFactory is null
* @throws llegalArgumentException if {@code nThreads <= 0}
*/
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
return new ThreadPoolExecutor(nThreads, nThreads,
OL, TimeUnit MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory);
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[
* Creates a {@code LinkedBlockingQueue} with a capacity of
*{@link Integer#MAX_VALUE}.

*/

public LinkedBlockingQueue() {

this(Integer MAX_VALUE );

}
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import java.time LocalDateTime;

import java.time.Zoneld;

import java.util. concurrent. LinkedBlockingQueue;
import java.util.concurrent. ThreadPoolExecutor;
import java.util.concurrent. TimeUnit;

@SIf4j
public class ThreadPoolShutDownDemo {

public static void main(String[] args) throws InterruptedException {
ThreadPoolExecutor executorService = new ThreadPoolExecutor(10, 10,
OL, TimeUnit. MILLISECONDS,

new LinkedBlockingQueue<>(50000), new NamedThreadFactory("shutdown-demo"));

int total = 20000;
for (inti=0;i < total; i++) {
executorService.submit(() -> {
try {
TimeUnit. MILLISECONDS :sleep(5L);
} catch (InterruptedException ignore) {

}

/ISystem.out.printin(Thread.currentThread().getName());
1

1135 1 AARAS
IlexecutorService.shutdownNow();
printExecutorinfo(total, executorService);

1155 2 JARRG
executorService.shutdown();

1155 3 A ARHS
I* shutdown()Z J& Fi #5211 55
executorService.submit(() -> {

i

I BRI LA, B — AT EE 55150

while (!executorService.isTerminated()) {
TimeUnit SECONDS sleep(1);
printExecutorInfo(total, executorService);

e
*FTENRFHLE B
*/
private static void printExecutorinfo(int total, ThreadPoolExecutor executorService) {
String dateString = DateUtil.toDateString(LocalDateTime.now(Zoneld.systemDefault()));
log.debug("itf [A]:{}, AT 4550 {3, TAERAIFA MES, CoEe{(IMES,
(), executorService.getCompletedTaskCount(), executorService.getActiveCount());

}

I {3145, dateString, total, executorService getQueue().size
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