15 57 3] 2 F il B 1E 1 2 3

g1 2019-11-20 14:30:25

AN YR B [5K RE RS AR A4, T A R] LI R SR A e 2. ——Hk

1.0 &

HI

Il

CFAEY 265 14 TR T AR IIgIR 1:

(511 QIE AR s N T 5 A R ORI AR A PR, 5 (3 A e [
(551] LA BH L SUE T e it B2, A FevrAE R A P B AT B AR 2k e

[5g]] AR 8 Executors A%, i 2i#it ThreadPoolExecutor 17, X RERIALEE T RikE
FAY [7 SN R A R Rt 3B AT R0, A T R T 1) RS

B PRX L HE BATAT OB R i LA il 7 -

o IBA N ATIERE I AE R ?
o LRRMIBAEEL, A NZ U 22] L it ?

TR LR AT i ELAR DA

2. JLE R
2.1 AL A B LKL AR

file:///read/55/article/1151
file:///read/55/article/1153

IBAHE—AN W A Z A B SRR 4 R e ?
CTEY 45 MR i 7 (3 H R [l)
WRRFGE BGPTSR — T N iEE jstack & 2 LFE f B

ENNGEZR

"pool-1-thread-1" #11 prio=5 os_prio=31 tid=0x00007fa0964c 7000 nid=0x4403 waiting on condition [0x000070000db67000]

at java.lang.Thread.run(Thread java: 748)

B E XA 44 :

" R BT % 26 FE thread-2" #11 prio=5 os_prio=31 tid=0x00007fa0964c7000 nid=0x4403 waiting on condition [0x000070000db67000]

at java.lang.Thread.run(Thread java: 748)
RFEFEA AR BRI ?

I ERE AR, BRATTAT AP T S A LR T 2R, o — 2 [AT AR A

L] SE LR ?

RENBIRGCEEA L, HEAER, BORMEHE, RERZHIE, FRAARRN, BT 7SR R T I 5K

BIREAGERAVEE R, A EATIPYE?

AT LLE ThreadPoolExecutor [HIE 5k FIRE R, WiEREFHEH —A threadFactory S4(, @il HIREE
FERBFRA TR UAIE 1% S H0E NR R A 8 2R A2

BRI A. java.util.concurrent. ThreadFactory , #IREH, oA 1AF UG :

Jxx

* Constructs a new {@code Thread}. Implementations may also initialize
* priority, name, daemon status, {@code ThreadGroup}, etc.

* @param r a runnable to be executed by new thread instance

* @return constructed thread, or {@code null} if the request to

* create a thread is rejected

*/

Thread newThread(Runnable r);

HEREIATR LARITE, 5 e o] R e AR e, BER R TR KBRS

A FATIATH B B %€ X ThreadFactory)22 i 4l g ?

@since
@author

f public interface ThreadFactory {

Choose Implementation of (49 found)

Q
q
q
q
q
q
Q
q

RE T LGB i 2 f hr S il RGeS & SEBLE, #EAT2A 2.

BAAREHERATT LS %, net.sf.ehcache.util. NamedThreadFactory

[
* A{@link ThreadFactory} that sets names to the threads created by this factory. Threads created by this factory

* will take names in the form of the string <code>namePrefix + " thread-" + threadNum</code> where <tt>threadNum</tt> is the
* count of threads created by this type of factory.

*

* @author Abhishek Sanoujam

*
public class NamedThreadFactory implements ThreadFactory {

private static Atomiclnteger threadNumber = new Atomicinteger(1);
private final String namePrefix;

private final boolean daemon;

[
* Constructor accepting the prefix of the threads that will be created by this {@link ThreadFactory}

*

* @param namePrefix Prefix for names of threads

*/

public NamedThreadFactory(String namePrefix, boolean daemon) {
this.namePrefix = namePrefix;
this.daemon = daemon;

}
e
* Constructor accepting the prefix of the threads that will be created by this {@link ThreadFactory}

*

* @param namePrefix

*

Prefix for names of threads

*/

public NamedThreadFactory(String namePrefix) {
this(namePrefix, false);

e
* Returns a new thread using a name as specified by this factory {@inheritDoc}
*/
public Thread newThread(Runnable runnable) {
final Thread thread = new Thread(runnable, namePrefix + " thread-" + threadNumber.getAndincrement());
thread.setDaemon(daemon);
return thread;

K] AS XA BT i -

4, KK TAE P RAME K % RS RIS E —F, B4 JDK JERDH 4 DA MRLE LB, efl]
FOACR AR AT 2 S5 1Y), IR BRATT A ST REBT A AR K Bl

2.2 N AANEAE N G S B 2R R ?

RPN X, S0 (Java Btk) 34 T 2

PRI SEGI R A R RE AR 2 —, RAEL KR — DR, BE DA T ERAARIE,
H A IATAL PR R AN B TRIR AT R (BB D i, R EE S FERIRZ TR

iR R TT SR T P AN S S I A B BRI B, IR St 5

MY € Java BEWLATE (Java SE 8 hit)) % 9 - 15 11 3 fiik, LAM (RAZEME Java EUNL: JVM SRt S
RAESEED) 25 39 UL 4 AHICHIA T A

BT EEX

HiEX REBI% AT A%

H eI R

s s

mirale | AmEO [T s

) sEEs

LREM BV T EIT BN . AHTER TR T B S LR A 1 A 251
LR SO o [ISCIX S R ST BT, DRk S SR 2 Gl e AN BB R KB AE R SR

MR R BATAT AT s 23 SRR AT Eont Gt B, Hotte H IR 52 SR BN K X & .

FVCRF BN, HE CR ORI A5, BMEH, TARE QERE LR,

XFEA REAETR 2N RLIVRRS I RERS “DEsRHE”, B B8 (1137 S 74 RS AE 2 2 AP LT K

515, BEARANSRAB A A TUHRAE 53 oh— RIS [BOR, TATEEAE B 9 oh— M % | BRI

ARAB T BRI LR 3 b — AR R R B BP0 R, i ERe A A 28 i KOF A8 AT PSRBT 55 BA S
MIZEAF AL SN, SEELE AR AT AR S5, AT LSS b b 2 AN R (132 555

2.3 Iy s 3] SRt ?
HEA I ISR DEMO K21 467

AT LRI R = 21 T e ?

i

N

X5

1. VRS EAUR I SR EI R AR %, i B A A N AR
2. 5 DEMO feligtyig 25, WATTLLEETELER, B AR Ry 505 A8 IE B S8k,

FIHNRF RGN, WTUVE BIR 2 AR 20 REt, (B i il B Aa A St IR R R o
Nt AWg?

sz, XRPINREZ N#GE il B kic et i — e S HON AL, M Sl IR I 2k > k22 21/, SR
GARZ, 1% BN BOR A AR

PRI — R X PR 8077 s R i S h I H .

2.3.1 YR

BATSEM java.util.concurrent. ThreadPoolExecutor FI#i& i H AL .

AT ERE T YEE JDK IVERE R BRA TS 2 G . RATE YRR I VR 2 35 B AT BRI — KR 0 o
WRAE A, BATI0 T S AT B AR S RS (R ? T G A — L R R e ?

FATRLZ S M LB B 2 AR S HU & S — KB 7 g, X576 6 SRe i i O B S 2 4 .

I
* Creates a new {@code ThreadPoolExecutor} with the given initial

* parameters.

* @param corePoolSize the number of threads to keep in the pool, even

* if they are idle, unless {@code allowCoreThreadTimeOut} is set

* @param maximumPoolSize the maximum number of threads to allow in the
* pool

* @param keepAliveTime when the number of threads is greater than

*

the core, this is the maximum time that excess idle threads
* will wait for new tasks before terminating.

* @param unit the time unit for the {@code keepAliveTime} argument

* @param workQueue the queue to use for holding tasks before they are
* executed. This queue will hold only the {@code Runnable}

* tasks submitted by the {@code execute} method.

* @param threadFactory the factory to use when the executor

* creates a new thread

* @param handler the handler to use when execution is blocked

because the thread bounds and queue capacities are reached
* @throws llegalArgumentException if one of the following holds:

* {@code corePoolSize < 0}

* {@code keepAliveTime < 0}

* {@code maximumPoolSize <= 0}

*

{@code maximumPoolSize < corePoolSize}
* @throws NullPointerException if {@code workQueue}
* or {@code threadFactory} or {@code handler} is null
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new lllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.acc = System.getSecurityManager() == null ?

null :

AccessController.getContext();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this keepAliveTime = unit.toNanos(keepAliveTime);
this threadFactory = threadFactory,
this.handler = handler;

T AR FRATT AT DA T b i 3 S S 0 e

o corePoolSize F/RiZ UL, BMES N ML PR, FRIFRE 7 RFZ DA FEIRERN
o maximumPoolSize /LA RN AT 1 KA E &

o keepAliveTime F/nZEFEih AP LR FE 2 RIAR1A], 2R AR 7R84 ST SRR AT 55 i 5 R BR 5

o unit 7~ keepAliveTime K47,

o workQueue FFBHATRIIAESS . RfFiGEI execute RREEHRAC Runnable £5%:

o threadFactory SRR ;

e handler £&7%HE R H. B\ 5175 5 ik B e AR N AT 32 FH A A B R

TEREIR G T R A, RETBLAAT ST

B RBATERHZORELZ —M execute JEAD:

[
* Executes the given task sometime in the future. The task
* may execute in a new thread or in an existing pooled thread.
* If the task cannot be submitted for execution, either because this
* executor has been shutdown or because its capacity has been reached,
* the task is handled by the current {@code RejectedExecutionHandler}.
* @param command the task to execute
* @throws RejectedExecutionException at discretion of
* {@code RejectedExecutionHandler}, if the task
* cannot be accepted for execution
* @throws NullPointerException if {@code command} is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
J
* Proceed in 3 steps:
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
intc = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (laddWorker(command, false))
reject(command);

A RERRATRT LARE, 2R AR

FEARR TN ZIHAT G E S o A T RES B IR MZTEAT,] RE &t DA AR LM
AT

WAL executor #5551 (shutdown) B35 25 =18 E LR TA BEFEASPATI, SR 4HIEN Rejec

tedExecutionHandler .

S AMIERG h 5GT- AT A0 SR AR JRAT TR AR 2 Rt (1 O«

execute 73 A 3 MEHESIE.
1. IR A /NT corePoolSize NMHATINERFE, NIHT LT L ATT 51 NE —MES RPAT;

2. WERAEFZININBN, FATIIR T 2 double-check W72 5 s EAL LA tpoFT g a2 (RN B AR B 5 W g
AN OLfFAENLAREET) SFIENZBIRE LRI T

3. WERAREABN, WEE—NILE. WRRM, FATHAE LR Ao A B S AN 75 20 IR 2R
SR RAB L 4 TS5

PSR, WA BATA AR B AN G YRR, FA 0 2R it A B AR X BOIRN R, B8 VR JE AR A i
TRIE S TIRZ .

FAVE2S] java.util.concurrent. ThreadPoolExecutor#shutdown B4 :

[
* Initiates an orderly shutdown in which previously submitted
* tasks are executed, but no new tasks will be accepted.
* Invocation has no additional effect if already shut down.
* <p>This method does not wait for previously submitted tasks to
* complete execution. Use {@link #awaitTermination awaitTermination}
* to do that.
* @throws SecurityException {@inheritDoc}
*/
public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
advanceRunState(SHUTDOWN);
interruptldieWorkers();
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();

}

tryTerminate();

MRAEERERRATR R

BARTHINUESPATTE T R A, BERA A FHEBCH IS .

R CLKA, AR EBERIER .

WRBASE/FOERTIMESPAT R FRED o WRFER LM#EMH java.util.concurrent. ThreadPoolExec

utor#tawaitTermination .

R anFRA TR B G —4)3%: “This method does not wait for previously submitted tasks to complete execution.”
IR, AL StackOverFlow 28 AH 26 ¢ i) ok SR 2.

BATRBIXFE—5: does-executorservice-shutdown-cancel-existing-tasks 3 &

The point is that the shutDown method refurns without waiting for the previously submitted tasks to complete,

but it still /ets them complete. You might want to think of it as a “start shutting down” method.

shutDown R &2 FEERAIESIMTM ERSILEHTIITEH) MAIBE . KA L2 AR
THEKI" FL

LRIEA L ERLRE, FERFKACESEY, KERAERIT.

LR TR M A% L SR O R B
MARNIKE S —A R, A (FMY AEIA Executors SRAIEELZEFENL?
FAILL FixedThreadPool A, koA HAARHEEA

[
* Creates a thread pool that reuses a fixed number of threads
* operating off a shared unbounded queue, using the provided
* ThreadFactory to create new threads when needed. At any point,
* at most {@code nThreads} threads will be active processing
* tasks. If additional tasks are submitted when all threads are
* active, they will wait in the queue until a thread is
* available. If any thread terminates due to a failure during
* execution prior to shutdown, a new one will take its place if
* needed to execute subsequent tasks. The threads in the pool will
* exist until it is explicitly {@link ExecutorService#shutdown
* shutdown}.
* @param nThreads the number of threads in the pool
* @param threadFactory the factory to use when creating new threads
* @return the newly created thread pool
* @throws NullPointerException if threadFactory is null
* @throws llegalArgumentException if {@code nThreads <= 0}
*/
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
return new ThreadPoolExecutor(nThreads, nThreads,
OL, TimeUnit MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory);

i TAE LR 22 S JATEE, A BB RERAF TR AR AT B FAE S5
i RS EATAT ELE) FixedThreadPool FIAZ AR B S KL HUMAE, T TARRA S A

java.util.concurrent.LinkedBlockingQueue

https://stackoverflow.com/questions/9905010/does-executorservice-shutdown-cancel-existing-tasks

i HBAYIE T, BATTAT LR A O B AU B KA

[
* Creates a {@code LinkedBlockingQueue} with a capacity of
*{@link Integer#MAX_VALUE}.

*/

public LinkedBlockingQueue() {

this(Integer MAX_VALUE);

}

MRAE AT 2RI RIR, AT — TP 5

BRI ZEATM S RAWIE 2, BRI OEEBUR, EFREFRZ TS, (2 HENTRZ TR
1, IRKEARSSE R, TAEASIT GRSk 2 B A KE T e ©4 OOM 71 .

AN RBAT B RE SRR B, AT DAL B AT 428 (4 5 K 2R HONT R] 28 1) AR BRI B2 LA R AR £ 55 . A4 B AE 5%
KEHER, £ OOM ZHImt#E N T 45 2 50K .

BB e RS, R AT
2.3.2 5 DEMO ki
B3 java.util.concurrent. ThreadPoolExecutor#tshutdown FITHEE, IS4 BRI B64IF 1% 2R £k P 2% S 2

FATRT LA L T ok A S

import java.time LocalDateTime;

import java.time.Zoneld;

import java.util. concurrent. LinkedBlockingQueue;
import java.util.concurrent. ThreadPoolExecutor;
import java.util.concurrent. TimeUnit;

@SIf4j
public class ThreadPoolShutDownDemo {

public static void main(String[] args) throws InterruptedException {
ThreadPoolExecutor executorService = new ThreadPoolExecutor(10, 10,
OL, TimeUnit. MILLISECONDS,

new LinkedBlockingQueue<>(50000), new NamedThreadFactory("shutdown-demo"));

int total = 20000;
for (inti=0;i < total; i++) {
executorService.submit(() -> {
try {
TimeUnit. MILLISECONDS :sleep(5L);
} catch (InterruptedException ignore) {

}

/ISystem.out.printin(Thread.currentThread().getName());
1

1135 1 AARAS
IlexecutorService.shutdownNow();
printExecutorinfo(total, executorService);

1155 2 JARRG
executorService.shutdown();

1155 3 A ARHS
I* shutdown()Z J& Fi #5211 55
executorService.submit(() -> {

i

I BRI LA, B — AT EE 55150

while (!executorService.isTerminated()) {
TimeUnit SECONDS sleep(1);
printExecutorInfo(total, executorService);

e
*FTENRFHLE B
*/
private static void printExecutorinfo(int total, ThreadPoolExecutor executorService) {
String dateString = DateUtil.toDateString(LocalDateTime.now(Zoneld.systemDefault()));
log.debug("itf [A]:{}, AT 4550 {3, TAERAIFA MES, CoEe{(IMES,
(), executorService.getCompletedTaskCount(), executorService.getActiveCount());

}

I {3145, dateString, total, executorService getQueue().size

PATHR T

if[A]: 2019-08-24 20:58:50, = fE55%(: 20000, TAERAZIHA: 19900 MES, C5ER: 90 MES, IEFE
PAT: 10 MES

if1E): 2019-08-24 20:59:02, = AE55%: 20000, TAEBAFIHA: 0 MES, C5Em: 20000 MES, IEEH
17: 0 MESS

LFRMB AR, B — R B — IR R A 515 B
MR] LIS 2 s 22 538] executorService.shutdown() J& , B23RATHE S ATR ST

KRETUFITHE 1 R, MEHAIT ThreadPoolExecutor#fexecutorService.shutdownNow J5 iS4k 42 $2 384T 55
M RejectedExecutionException .

AR B S AR, RSHAT LS — 22 1) DEMO, o m] DAY s R 100 5% 50 2 405

3. M4

AT, FATHRAE ARG E . StackOverFlow Kik. 5 DEMO k% S EFEB I — Lo AR S, AFE AR A% O
SR, SRR AR O e B IR A 7

28R, KSR AT UL ZAR T sl TR R AR O s R 7 ST FAT TR S
T RATRE AT B RZIRAWI T T JUnit BRI A SRR 2 2R (1)
WE%

1. HRFWEANTEANE, oA A HEF{EH CachedThreadPool 5 Al ;
2. BEAT IR, @RS RS DEMO ()7 2T 7 ThreadPoolExecutor] shutdownNow A1 shutdown
BRI X)

9

5 BOR

FTEEMEE Java #EX P&k . (Java TF R T 1.5.0) 1Lk, 2019. 14

[EN] Kamalmeet Singh, [1i72%] Adrian lanculescu, [%' 5 Jé] Lucian-Paul Torje. Java it & sk, dk/)s
i, YL, W . MU A 2019:34-36

[3%] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley. (Java R KLY (Java SE 8 iR)) . & i, &
AR, MU DL At 2018:9-15

JEY. (RANELE Java BEMNL: JVM S 200k S ESEEk) . MLk ol it 2018:38-43 1

	1. 前言
	2. 规定解释
	2.1 为线程池指定有意义的线程名称
	2.2 为什么不要在应用中显式创建线程？
	2.3 如何学习线程池？
	2.3.1 读源码
	2.3.2 写 DEMO 大法

	3. 总结
	课后练习
	参考资料

