
更新时间：2020-06-03 15:43:23

20 单元测试的知识储备

1. 前言

单元测试作为编码质量的重要保障手段，是编码的一个非常重要的环节。

《手册》 第三部分对单元测试进行了描述 1，包括：单元测试必须遵守自动化、独立性和可重复性原则；单元测试

的粒度一般是方法级别，最多也是类级别；核心业务、核心应用。核心模块的增量代码确保单元测试通过等。

那么接下来我们思考几个问题：

什么是单元测试？

为什么要编写单元测试？

什么是好的单元测试？

单元测试的常用框架有哪些？

这些都是本节将探讨的重点内容。

2. 单元测试相关概念

2.1 单元测试和集成测试

人只有献身于社会，才能找出那短暂而有风险的生命的意义。——爱因斯坦

file:///read/55/article/1156
file:///read/55/article/1158


很多人一直在写单元测试，却不知道单元测试和集成测试的区别，认为：“使用能够编写单元测试的框架编写的测

试就是单元测试”，这种认识是不全面的。

接下来，我们先了解单元测试和集成测试的概念和主要区别。

《单元测试的艺术》 第一章 单元测试的基础对集成测试和单元测试进行了描述 2：

单元测试：

一个单元测试是一段代码，这段代码调用一个工作单元，并检验该工作单元的一个具体的最终结果。

如果关于这个最终结果的假设是错误的，单元测试就失败了。

一个单元测试的范围可以小到一个方法，大到一个类。

集成测试：

“任何测试，如果它运行速度不快，结果不稳定，或者要用到被测试单元的一个或者多个真实依赖，我就认为

它是集成测试。”

集成测试是对一个工作单元进行测试，这个测试对被测试的工作单元没有完全控制，并使用单元的一个或多个

真实依赖物，例如时间、网络、数据库、线程或随机数产生器等。

两者的主要联系和区别：

集成测试和单元测试同样都很重要，都是验证系统功能的重要手段。

但是集成测试运行通常更慢，很难编写，很难做到自动化，需要配置，通常一次测试的东西过多。

集成测试会使用真实的依赖，而单元测试则把被测试的单元和其依赖隔离，以保证单元测试的高度稳定，还可以轻

易控制和模拟被测试单元的行为方面。

因此单元测试和集成测试最主要的区别之一就是测试中是否依赖 “真实环境”。

2.2 单元测试的重要性

很多人经常以 “时间紧，任务重” 或者 “单元测试没用” 为借口来拒绝编写单元测试。

但是 BUG 在软件的生命周期越早阶段发现，付出的代价越少。

单元测试可以让很多 BUG 在编码阶段就能够及时发现并解决，而不需要交给测试人员兜底，如果测试人员兜底失

败，可能造成线上故障。

有了单元测试作保障，我们还可以放心对函数进行重构，如果重构代码导致单元测试运行失败，则说明重构的代码

有问题。



长远来看，单元测试对编码的益处（如提高代码质量和避免 BUG）远比编写单元测试的投入所花费的代价要

大的多。

2.3 单元测试的方法

从我个人的理解来看，编写单元测试通常有两种方法，包括传统的单测方法和测试驱动开发，两种略有不同。

单元测试的传统方法大致流程如下：

在国内，很多团队采用传统的方式，即先编写好代码，然后再编写单元测试来验证该段代码是否正确。

也有一些团队采用如下图所示的方式，即先编写单元测试，然后编写代码让通过测试。这种开发方式被称为测试驱

动开发（Test-Driven Development, TDD）。

TDD 体现了 “以终为始” 的思想，即先制定目标，然后去验证是否实现了目标，而不是先做再去 “思考目标”。

实践 TDD 的关键步骤

1. 编写一个失败的测试来证明产品中代码和功能的缺陷；

2. 编写符合测试预期的产品代码，使测试通过；

3. 重构代码。

虽然 TDD 更 “出名”，具体采用哪种方法主要看团队约定和个人编程习惯。

由于团队没有强制约定，或者开发前参数不容易确定等原因，传统的单元测试方法依然被很多开发人员采用。



2.4 何为优秀的单元测试？

既然要编写单元测试，那么好的单元测试标准是什么呢？

参考众多单元测试相关资料，我们得总结出优秀的单元测试应该具有以下几个特征：

满足功能：被检验的函数或类的逻辑行为满足预期功能；

满足 AIR 原则：单元测试应该可以自动执行；单元测试的用例之间要保持彼此独立；单元测试可以重复执

行。

优秀的单元测试还应该具有编写容易，运行快速的特点。

在学习和开发过程中，看到很多人依然通过打印语句输出结果，通过 “肉眼” 来测试，这样如果对被测试的类或函数

做出修改而无法满足功能要求，单元测试也会运行通过，就失去了单元测试的意义。

因此，建议大家在学习和工作开发过程中要遵循上述指导原则，编写出优秀的单元测试。

3. Java 单元测试工具

常用的 Java 单元测试有: JUnit、TestNG。

TestNG 受 JUnit 和 NUnit 的启发，功能相似，但是比 JUnit 更强大。TestNG 不只为单元测试而设计，其框架的设

计目标是支持单元测试、公共能测试，端对端测试，集成测试等。

JUnit 具体用法比较简单，如果想系统学习可官方使用指南，参考《JUnit 实战 (第 2 版)》, TestNG 和 JUnit 非常相

似，如果想深入学习，首推 TestNG 官方文档。

主流的 Java mock 框架有: Mockito, JMockit, Easy Mock 。

根据《What are the best mock framteworks for Java》一文 3，我们可以看到三者的特点和优劣。

Mockito 简洁易用，有 PowerMock 拓展，允许静态函数测试，社区强大，对结果的验证和异常处理非常简洁、灵

活。缺点是框架本身不支持 static 和 private 函数的 mock。

JMockit 简单易用；可以 mock “一切”，包括 final 类， final/private/static 函数，而其他 mock 框架往往只支持其中

一部分；缺点是社区支持不够活跃，3 个 contributers 介乎只有一个在干活，学习曲线比较陡峭。

Easy Mock 上手简单，文档清晰；同样的社区较小，导致更多人选择其它的 mock 框架。

还有很多其他配合单元测试的框架，如强大的构造随机 Java 对象的 Easy Random ，构造随机字符串的 Java

Faker 等。

4. 总结

本节主要介绍了单元测试的概念、单元测试和集成测试的区别以及单元测试的必要性、主要步骤、主要框架等。

希望通过本节的学习，大家对单元测试能够有一个初步的理解。

https://testng.org/doc/documentation-main.html
https://github.com/j-easy/easy-random
https://github.com/DiUS/java-faker


 19 日志学习和使用的正确姿势 21 单元测试构造数据的正确姿势

下一节我们将介绍单元测试的范例。

参考资料

1. 阿里巴巴与 Java 社区开发者.《 Java 开发手册 1.5.0》. 华山版 .2019 ��

2. [以] Roy Osherove. 《单元测试的艺术》[M]. [译] 金迎。人民邮电出版社.2014 ��

3. 《What are the best mock framteworks for Java》 ��

}

https://www.slant.co/topics/259/~best-mock-frameworks-for-java

	1. 前言
	2. 单元测试相关概念
	2.1 单元测试和集成测试
	2.2 单元测试的重要性
	2.3 单元测试的方法
	2.4 何为优秀的单元测试？

	3. Java 单元测试工具
	4. 总结
	参考资料

