
更新时间：2020-06-03 15:45:41

22 单元测试之单测举例

1. 前言

前面我们讲到了构造单元测试数据的几种方式，接下来我们将讲述如何编写单元测试。

《手册》 第 29 页有对数据库单元测试的规定 1：

【推荐】和数据库相关的单元测试，可以设定自动回滚机制，不给数据库造成脏数据。或者

对单元测试产生的数据有明确的前后缀标识。

那么单元测试还有哪些注意事项，除了数据库相关的单元测试外，其它的单元测试又该如何去写呢？

2. 对哪些代码写单测？

实际开发中，主要对数据访问层、 服务层和工具类进行单元测试。

正如前言中所说，数据库相关的单元测试，一般要设置自动回滚。除此之外，还可以整合 H2 等内存数据库来对数

据访问层代码进行测试。

工具类的单元测试也非常重要，因为工具类一般在服务内共用，如果有 BUG，影响面很大，很容易造成线上问题

或故障。一般需要构造正常和边界值两种类型的用例，对工具类进行全面的测试，才可放心使用。此时结合注释小

节所讲的内容，需将典型的调用和结果添加到注释上，方便函数的使用者。

一个人追求的目标越高，他的才力就发展得越快，对社会就越有益。——高尔基

file:///read/55/article/1158
file:///read/55/article/1160

服务层的单元测试，一般要依赖 mock 工具，将服务的所有依赖都 mock 掉。其本质是 “控制变量法”，将原本依赖

的 N 个 “变量 " 都变为 “常量”，只观察所要测试的服务逻辑是否正确。

3. 单元测试的结构

大家一定要牢记编写单元测试的核心逻辑，其结构如下：

典型的单元测试可分为三个阶段，分别为准备、执行和验证 2。

准备阶段（Given） 主要负责创建测试数据、构造 mock 方法的返回值，准备环节的编码是单元测试最复杂的部

分。需要注意的是 Mockito 库中以 when 开头的函数其实是在准备阶段。

执行阶段（When） 一般只是调用测试的函数，此部分代码通常较短。

验证阶段（Then） 通常验证测试函数的执行的结果、 准备阶段 mock 函数的调用次数等是否符合预期。

4. 单元测试方法命名

早期必须在单元测试函数命名前加入 ‘test’ 前缀。现在已经不推荐这么使用，一般采用驼峰。

也会有很多人会将太多描述放到测试函数命名中，这也不太推荐，此种情况应该放到函数的注释中。

推荐的命名格式如： shouldReturnItemNameInUpperCase()。

5. 单元测试举例

数据访问层测试，只不过是将正常的环境加入了回滚或者采用内存 / 内嵌数据库，难度不大，这里就不给出具体范

例。本文将重点讲述工具类的测试和服务层的测试。

5.1 工具类的测试

学习工具类的单元测试，强烈推荐大家参考 guava、commons-lang3、 commons-collection4 这三个知名开源工具

类项目的源码的单元测试代码。

如 commons-lang3 包的 StringUtils#contains 源码:

https://github.com/google/guava
https://github.com/apache/commons-lang
https://github.com/apache/commons-collections

对应的单元测试代码如下:

我们可看到，测试时除了选择符合条件的用例外，还要选择不符合条件的用例。其中不符合条件的用例可以还包括

常规的用例和特殊用例（边界条件）。

再如 guava 的 StopWatch#stop ：

// Contains
//---
/**
 * <p>Checks if CharSequence contains a search character, handling {@code null}.
 * This method uses {@link String#indexOf(int)} if possible.</p>
 *
 * <p>A {@code null} or empty ("") CharSequence will return {@code false}.</p>
 *
 * <pre>
 * StringUtils.contains(null, *) = false
 * StringUtils.contains("", *) = false
 * StringUtils.contains("abc", 'a') = true
 * StringUtils.contains("abc", 'z') = false
 * </pre>
 *
 * @param seq the CharSequence to check, may be null
 * @param searchChar the character to find
 * @return true if the CharSequence contains the search character,
 * false if not or {@code null} string input
 * @since 2.0
 * @since 3.0 Changed signature from contains(String, int) to contains(CharSequence, int)
 */
public static boolean contains(final CharSequence seq, final int searchChar) {
 if (isEmpty(seq)) {
 return false;
 }
 return CharSequenceUtils.indexOf(seq, searchChar, 0) >= 0;
}

@Test
public void testContains_Char() {
 // 不符合条件的特殊用例
 assertFalse(StringUtils.contains(null, ' '));
 assertFalse(StringUtils.contains("", ' '));
 assertFalse(StringUtils.contains("", null));
 assertFalse(StringUtils.contains(null, null));
 // 符合条件的用例
 assertTrue(StringUtils.contains("abc", 'a'));
 assertTrue(StringUtils.contains("abc", 'b'));
 assertTrue(StringUtils.contains("abc", 'c'));
 // 不符合条件的正常用例
 assertFalse(StringUtils.contains("abc", 'z'));
}

根据源码我们可知，调用该函数后� isRunning 会被设置为 false，如果重复调用会抛出 IllegalStateException，

因此，我们要测试已经停止后再次调用停止函数会的效果。

验证调用该函数后 isRunning 的确会被设置为 false，如果重复调用会抛出 IllegalStateException，因此该函数的

单元测试源码如下（注意该测试函数命名）：

5.2 服务层的测试

服务层的测试一般将底层的所有依赖都 mock 掉，最常用的框架为 Mockito、JMockit、 Easy Mock。

本小节的示例采用的是 Mockito。

核心场景如 ：A 类的某函数依赖 B 类的某函数和 C 类的某函数，而 B 类又依赖 E 类和 F 类，C 类又依赖 D 类，

等等。

/**
 * Stops the stopwatch. Future reads will return the fixed duration that had elapsed up to this
 * point.
 *
 * @return this {@code Stopwatch} instance
 * @throws IllegalStateException if the stopwatch is already stopped.
 */
@CanIgnoreReturnValue
public Stopwatch stop() {
 long tick = ticker.read();
 checkState(isRunning, "This stopwatch is already stopped.");
 isRunning = false;
 elapsedNanos += tick - startTick;
 return this;
}

public void testStop_alreadyStopped() {
 stopwatch.start();
 stopwatch.stop();
 try {
 stopwatch.stop();
 fail();
 } catch (IllegalStateException expected) {
 }
 assertFalse(stopwatch.isRunning());
}

如果要测试 A 类的某个函数，则需要 mock B 类 和 C 类的对象。测试者可以指定 B 的某个函数接受某个参数返回

固定的结果，指定 C 接受特定参数，返回特定结果，然后调用 A 的对应函数，验证 A 的返回值是否符合期待。

注：为了简化，此处并没有采用标准的类图方式作图。

此时有些朋友可能会有一个疑问，为什么不 mock D 、E 和 F 等其它类呢？

其实这就是本专栏特别强调学习时要重视 “是什么” 的原因。单元测试从思想上来讲就是 “控制变量法”，即将依赖变

为 “常量”，只有待测试的函数参数是 “变量”，通过输入参数推测出结果，和实际的结果去对比，才可以更好地验证

其正确性。

因此，我们只需要把它的直接依赖变成 “常量” 即可，其它的依赖 mock 没有意义。

另外，大家一定要注意单元测试和集成测试的区别，不要将单元测试和集成测试混在一起。

下面给出一个简单示例：

待测试的服务接口：

待测试的服务的实现类：

可见该服务依赖数据访问组件 ItemRepository。

public interface ItemService {

 String getItemNameUpperCase(String itemId);
}

@Service
public class ItemServiceImpl implements ItemService {

 @Resource
 private ItemRepository itemRepository;

 @Override
 public String getItemNameUpperCase(String itemId) {

 Item item = itemRepository.findById(itemId);

 if (item == null) {
 return null;
 }
 return item.getName().toUpperCase();
 }
}

根据前面的单元测试的结构和命名建议，我们对该函数编写单元测试代码：

测试函数采用驼峰命名并且体现出了该测试函数的核心含义。

可以看出在准备阶段，构造测试对象（数据）并 mock 掉底层依赖；在执行阶段直接调用待测试的函数；在验证

阶段 对结果进行断言。

Mockito 的更多高级用法请参考官方网站和框架配套 wiki。如果需要 mock 静态方法、私有函数等，可以学习

PowerMock， 拉取其源码通过学习单元测试来快速掌握其用法。

5. 总结

本节主要给出单元测试在实际编程中的运用，给出了单元测试的结构、命名建议以及使用范例。希望大家在实际编

程中能够举一反三，灵活运用，通过单元测试提高编码的质量。

下一节将给出 Java 学习宝典。

6. 课后作业

拉取 PowerMock 的源码，通过源码的单元测试来学习如何 mock 私有函数；

import org.junit.Before;
import org.junit.Test;
import org.mockito.InjectMocks;
import org.mockito.Mock;
import org.mockito.MockitoAnnotations;

import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.Mockito.*;

public class ItemServiceTest {

 @Mock
 private ItemRepository itemRepository;

 @InjectMocks
 private ItemServiceImpl itemService;

 @Before
 public void setUp(){
 MockitoAnnotations.initMocks(this);
 }

 /**
 * 如果从存储层查询到一个Item, 那么它的 name 将被转化为大写.
 */
 @Test
 public void shouldReturnItemNameInUpperCase() {

 // Given
 Item mockedItem = new Item("it1", "Item 1", "This is item 1", 2000, true);
 when(itemRepository.findById("it1")).thenReturn(mockedItem);

 // When
 String result = itemService.getItemNameUpperCase("it1");

 // Then
 verify(itemRepository, times(1)).findById("it1");
 assertThat(result).isEqualTo("ITEM 1");
 }
}

https://site.mockito.org/
https://github.com/mockito/mockito/wiki
https://github.com/powermock/powermock/wiki/mockito

 21 单元测试构造数据的正确姿势 23 Java学习宝典

使用 easy-random 代替 shouldReturnItemNameInUpperCase () 函数构造测试数据部分的代码。

参考资料

1. 阿里巴巴与 Java 社区开发者.《 Java 开发手册 1.5.0》华山版.2019 ��

2. 《Given-When-Then in Junit Tests》 ��

}

https://blog.codecentric.de/en/2017/09/given-when-then-in-junit-tests/

	1. 前言
	2. 对哪些代码写单测？
	3. 单元测试的结构
	4. 单元测试方法命名
	5. 单元测试举例
	5.1 工具类的测试
	5.2 服务层的测试

	5. 总结
	6. 课后作业
	参考资料

