
更新时间：2020-10-22 18:05:33

38 日期相关新增规约的启示

1. 前言

《手册》泰山版给出了很多日期时间相关的建议。如：日期格式化时，传入 pattern 中表示年份统一使用小写的

y；在日期格式化中分清楚大写的 M 和小写的 m，大小的 H 和小写的 h 分别代表的意义；不要在程序中写死一年

为 365 天，避免在公历闰年时出现日期转换错误或程序逻辑错误；使用枚举值来指代月份。如果使用数字，注意

Date，Calendar 等日期相关类的月份 month 取值在 0-11 之间等。

那么这些建议给我们带来的启示又是什么呢？

2. 启示

2.1 尽量使用官方常量和知名项目的工具类

使用常量、枚举值来指代月份，就避免了因不了解月份的范围为 0 - 11 而导致的 BUG。而且常量和枚举的意义就

是将不容易记忆和理解的数字变为容易理解和记忆的单词。

实际编码过程中很多人会通过加、减、乘、除运算来计算时间，很容易出错。

建议大家在平时编码过程中如果 JDK 源码中提供了相关函数则优先使用，否则优先使用知名的三方框架。如常见

的工具库：joda-time、 commons-lang3、commons-collection4、 guava 等。

人生的价值，并不是用时间，而是用深度去衡量的。——列夫·托尔斯泰

file:///read/55/article/1174
file:///read/55/article/1959

如想计算程序运行的时间差，可以使用 commons-lang3 提供的 org.apache.commons.lang3.time.StopWatch 类。

该类提供了重置、暂停、恢复和获取时间差的功能，并且时间差支持根据 TimeUnit 来获取。

如果想构造区间可以使用 guava 的 com.google.common.collect.Range 类，在 guava 的源码中给出了非常详尽的

单元测试，如：

官方以及优秀的开源项目代码一般都会进行严格的单元测试，经历过实践的检验，而且不断优化和迭代，往

往提供的功能更丰富，出现问题的概率较低，封装的层次更高，性能普遍较高，逻辑更严谨。

2.2 多看源码

建议大家在日常开发过程中养成偶尔去翻看源码的习惯，多看看类的注释、常用函数注释和源码，多看看常用类的

函数列表等。

JDK 和知名项目的源码注释会给出非常详尽的信息，会给出该类的目的，注意事项，甚至常见的用法，对我们学习

和理解有极大的帮助。

如 java.util.Calendar 源码中清晰地给出 Calendar.SUNDAY 值为 1 ， Calendar.JANUARY 值为 0 ：

@Test
public void testStopWatchSimpleGet() {
 final StopWatch watch = new StopWatch();
 assertEquals(0, watch.getTime());
 assertEquals("00:00:00.000", watch.toString());

 watch.start();
 try {
 Thread.sleep(500);
 } catch (final InterruptedException ex) {
 // ignore
 }
 assertTrue(watch.getTime() < 2000);
}

public void testContainsAll() {
 Range<Integer> range = Range.closed(3, 5);
 assertTrue(range.containsAll(asList(3, 3, 4, 5)));
 assertFalse(range.containsAll(asList(3, 3, 4, 5, 6)));

 // We happen to know that natural-order sorted sets use a different code
 // path, so we test that separately
 assertTrue(range.containsAll(ImmutableSortedSet.of(3, 3, 4, 5)));
 assertTrue(range.containsAll(ImmutableSortedSet.of(3)));
 assertTrue(range.containsAll(ImmutableSortedSet.<Integer>of()));
 assertFalse(range.containsAll(ImmutableSortedSet.of(3, 3, 4, 5, 6)));

 assertTrue(Range.openClosed(3, 3).containsAll(Collections.<Integer>emptySet()));
}

再如 java.time.LocalTime#of(int, int, int) 的 hour 的范围是 0 到 23，稍微不留神可能就会传入 24。

很多同学学习技术看了容易忘，看了记不住的一个重要原因是把学习当作纯粹的记忆。

学习某个知识点，比如日期时间 Calendar 的 month 取值问题，总是看书上怎么写，然后记忆下来，却从来不主动

去源码里看看。

这样会造成看过的知识点可能会忘记，没看过的知识点不知道，而且很难举一反三，学习效果不太好。

另外正如前面所说，大家看源码的时候一定要 **“先猜想，后验证”**，这样才能印象更加深刻，才能学到东西。

这也是一个非常好的学习方法。当你猜想某个类应该有什么功能，某个函数应该包含哪些步骤，然后再去源码中去

印证，发现源码和自己的想法非常相符时，说明自己的想法比较靠谱。如果不符，思考为什么要这么写，这样收获

才会更大。

/**
 * Value of the {@link #DAY_OF_WEEK} field indicating
 * Sunday.
 */
public final static int SUNDAY = 1;

/**
 * Value of the {@link #DAY_OF_WEEK} field indicating
 * Monday.
 */
public final static int MONDAY = 2;

/**
 * Value of the {@link #MONTH} field indicating the
 * first month of the year in the Gregorian and Julian calendars.
 */
public final static int JANUARY = 0;

/**
 * Value of the {@link #MONTH} field indicating the
 * second month of the year in the Gregorian and Julian calendars.
 */
public final static int FEBRUARY = 1;

 /**
 * Obtains an instance of {@code LocalTime} from an hour, minute and second.
 * <p>
 * This returns a {@code LocalTime} with the specified hour, minute and second.
 * The nanosecond field will be set to zero.
 *
 * @param hour the hour-of-day to represent, from 0 to 23
 * @param minute the minute-of-hour to represent, from 0 to 59
 * @param second the second-of-minute to represent, from 0 to 59
 * @return the local time, not null
 * @throws DateTimeException if the value of any field is out of range
 */
 public static LocalTime of(int hour, int minute, int second) {
 HOUR_OF_DAY.checkValidValue(hour);
 if ((minute | second) == 0) {
 return HOURS[hour]; // for performance
 }
 MINUTE_OF_HOUR.checkValidValue(minute);
 SECOND_OF_MINUTE.checkValidValue(second);
 return new LocalTime(hour, minute, second, 0);
 }

 37 Java避坑宝典 39 集合相关新增规约的启示

3. 总结

《手册》日期时间章节给我们带来的主要启发是：尽量使用官方常量和知名项目的工具类；多看源码。

希望大家能够重视并实践这些原则，在学习过程中能够自己透过现象看本质，学习更抽象层次的知识。

4、思考和练习

1、你还知道哪些日期时间相关的坑？

欢迎在下方留言评论。

}

	1. 前言
	2. 启示
	2.1 尽量使用官方常量和知名项目的工具类
	2.2 多看源码

	3. 总结
	4、思考和练习

