
读取和返回 HTTP 请求
本节核⼼内容

如何读取 HTTP 请求数据
如何返回数据
如何定制业务的返回格式

本⼩节源码下载路径：demo06
(https://github.com/lexkong/apiserver_demos/tree/master/demo06)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo05
(https://github.com/lexkong/apiserver_demos/tree/master/demo05)
来开发的。

读取和返回参数

在业务开发过程中，需要读取请求参数（消息体和 HTTP
Header），经过业务处理后返回指定格式的消息。apiserver 也展
示了如何进⾏参数的读取和返回，下⾯展示了如何读取和返回参数：

读取 HTTP 信息： 在 API 开发中需要读取的参数通常为：HTTP
Header、路径参数、URL参数、消息体，读取这些参数可以直接使
⽤ gin 框架⾃带的函数：

Param()：返回 URL 的参数值，例如

https://github.com/lexkong/apiserver_demos/tree/master/demo06
https://github.com/lexkong/apiserver_demos/tree/master/demo05

 router.GET("/user/:id", func(c *gin.Context) {
 // a GET request to /user/john
 id := c.Param("id") // id == "john"
 })

Query()：读取 URL 中的地址参数，例如

 // GET /path?id=1234&name=Manu&value=
 c.Query("id") == "1234"
 c.Query("name") == "Manu"
 c.Query("value") == ""
 c.Query("wtf") == ""

DefaultQuery()：类似 Query()，但是如果 key 不存在，
会返回默认值，例如

 //GET /?name=Manu&lastname=
 c.DefaultQuery("name", "unknown") == "Manu"
 c.DefaultQuery("id", "none") == "none"
 c.DefaultQuery("lastname", "none") == ""

Bind()：检查 Content-Type 类型，将消息体作为指定的格
式解析到 Go struct 变量中。apiserver 采⽤的媒体类型是
JSON，所以 Bind() 是按 JSON 格式解析的。

GetHeader()：获取 HTTP 头。

返回HTTP消息： 因为要返回指定的格式，apiserver 封装了⾃⼰的
返回函数，通过统⼀的返回函数 SendResponse 来格式化返回，⼩
节后续部分有详细介绍。

增加返回函数

API 返回⼊⼝函数，供所有的服务模块返回时调⽤，所以这⾥将⼊⼝
函数添加在 handler ⽬录下，handler/handler.go 的源码为：

package handler

import (
 "net/http"

 "apiserver/pkg/errno"

 "github.com/gin-gonic/gin"
)

type Response struct {
 Code int `json:"code"`
 Message string `json:"message"`
 Data interface{} `json:"data"`
}

func SendResponse(c *gin.Context, err error, data
interface{}) {
 code, message := errno.DecodeErr(err)

 // always return http.StatusOK
 c.JSON(http.StatusOK, Response{
 Code: code,
 Message: message,
 Data: data,
 })
}

可以看到返回格式固定为：

type Response struct {
 Code int `json:"code"`
 Message string `json:"message"`
 Data interface{} `json:"data"`
}

在返回结构体中，固定有 Code 和 Message 参数，这两个参数通过
函数 DecodeErr() 解析 error 类型的变量⽽来（DecodeErr()
在上⼀节介绍过）。Data 域为 interface{} 类型，可以根据业务
⾃⼰的需求来返回，可以是 map、int、string、struct、array 等
Go 语⾔变量类型。SendResponse() 函数通过
errno.DecodeErr(err) 来解析出 code 和 message，并填充在
Response 结构体中。

在业务处理函数中读取和返回数据

通过改写上⼀节 handler/user/create.go 源⽂件中的
Create() 函数，来演示如何读取和返回数据，改写后的源码为：

package user

import (
 "fmt"

 . "apiserver/handler"
 "apiserver/pkg/errno"

 "github.com/gin-gonic/gin"
 "github.com/lexkong/log"
)

// Create creates a new user account.
func Create(c *gin.Context) {

 var r CreateRequest
 if err := c.Bind(&r); err != nil {
 SendResponse(c, errno.ErrBind, nil)
 return
 }

 admin2 := c.Param("username")
 log.Infof("URL username: %s", admin2)

 desc := c.Query("desc")
 log.Infof("URL key param desc: %s", desc)

 contentType := c.GetHeader("Content-Type")
 log.Infof("Header Content-Type: %s",
contentType)

 log.Debugf("username is: [%s], password is
[%s]", r.Username, r.Password)
 if r.Username == "" {
 SendResponse(c,
errno.New(errno.ErrUserNotFound,
fmt.Errorf("username can not found in db:
xx.xx.xx.xx")), nil)
 return
 }

 if r.Password == "" {
 SendResponse(c, fmt.Errorf("password is
empty"), nil)
 }

 rsp := CreateResponse{
 Username: r.Username,

 }

 // Show the user information.
 SendResponse(c, nil, rsp)
}

这⾥也需要更新下路由，router/router.go（详⻅
demo06/router/router.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo06/router/router.go)

上例展示了如何通过 Bind()、Param()、Query() 和
GetHeader() 来获取相应的参数。

根据笔者的研发经验，建议：如果消息体有 JSON 参数需要传递，针
对每⼀个 API 接⼝定义独⽴的 go struct 来接收，⽐如
CreateRequest 和 CreateResponse，并将这些结构体统⼀放在
⼀个 Go ⽂件中，以⽅便后期维护和修改。这样做可以使代码结构更
加规整和清晰，本例统⼀放在 handler/user/user.go 中，源码
为：

package user

type CreateRequest struct {
 Username string `json:"username"`
 Password string `json:"password"`
}

type CreateResponse struct {
 Username string `json:"username"`
}

https://github.com/lexkong/apiserver_demos/blob/master/demo06/router/router.go

编译并运⾏

1. 下载 apiserver_demos 源码包（如前⾯已经下载过，请忽略
此步骤）

$ git clone
https://github.com/lexkong/apiserver_demos

2. 将 apiserver_demos/demo06 复制为
$GOPATH/src/apiserver

$ cp -a apiserver_demos/demo06/
$GOPATH/src/apiserver

3. 在 apiserver ⽬录下编译源码

$ cd $GOPATH/src/apiserver
$ gofmt -w .
$ go tool vet .
$ go build -v .

测试

启动apiserver：./apiserver，发送 HTTP 请求：

$ curl -XPOST -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user/admin2?desc=test -
d'{"username":"admin","password":"admin"}'

{
 "code": 0,
 "message": "OK",
 "data": {
 "username": "admin"
 }
}

查看 apiserver ⽇志：

可以看到成功读取了请求中的各类参数。并且 curl 命令返回的结果
格式为指定的格式：

{
 "code": 0,
 "message": "OK",
 "data": {
 "username": "admin"
 }
}

⼩结

本⼩节介绍了如何进⾏ HTTP 请求的读取和返回，读取主要⽤ gin
框架⾃带的函数，返回要统⼀⽤函数 SendResponse。

