
⽤户业务逻辑处理

本节核⼼内容

这⼀节是核⼼⼩节，讲解如何处理⽤户业务，这也是 API 的核⼼功
能。本⼩节会讲解实际开发中需要的⼀些重要功能点，并根据笔者的
开发经验，给出⼀些建议。功能点包括：

各种场景的业务逻辑处理

创建⽤户
删除⽤户
更新⽤户
查询⽤户列表
查询指定⽤户的信息

数据库的 CURD 操作

本⼩节源码下载路径：demo07
(https://github.com/lexkong/apiserver_demos/tree/master/demo07)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo06
(https://github.com/lexkong/apiserver_demos/tree/master/demo06)
来开发的。

配置路由信息

https://github.com/lexkong/apiserver_demos/tree/master/demo07
https://github.com/lexkong/apiserver_demos/tree/master/demo06

需要先在 router/router.go ⽂件中，配置路由信息：

func Load(g *gin.Engine, mw ...gin.HandlerFunc)
*gin.Engine {
 ...
 // ⽤户路由设置
 u := g.Group("/v1/user")
 {
 u.POST("", user.Create) // 创建⽤户
 u.DELETE("/:id", user.Delete) // 删除⽤户
 u.PUT("/:id", user.Update) // 更新⽤户
 u.GET("", user.List) // ⽤户列表
 u.GET("/:username", user.Get) // 获取指定
⽤户的详细信息
 }
 ...
 return g
}

在 RESTful API 开发中，API 经常会变动，为了兼容⽼
的 API，引⼊了版本的概念，⽐如上例中的
/v1/user，说明该 API 版本是 v1。

很多 RESTful API 最佳实践⽂章中均建议使⽤版本控
制，笔者这⾥也建议对 API 使⽤版本控制。

注册新的错误码

在 pkg/errno/code.go ⽂件中（详⻅
demo07/pkg/errno/code.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo07/pkg/errno/code.go)

https://github.com/lexkong/apiserver_demos/blob/master/demo07/pkg/errno/code.go

新增如下错误码：

var (
 // Common errors
 ...

 ErrValidation = &Errno{Code: 20001,
Message: "Validation failed."}
 ErrDatabase = &Errno{Code: 20002,
Message: "Database error."}
 ErrToken = &Errno{Code: 20003,
Message: "Error occurred while signing the JSON
web token."}

 // user errors
 ErrEncrypt = &Errno{Code: 20101,
Message: "Error occurred while encrypting the
user password."}
 ErrTokenInvalid = &Errno{Code: 20103,
Message: "The token was invalid."}
 ErrPasswordIncorrect = &Errno{Code: 20104,
Message: "The password was incorrect."}
)

新增⽤户

更新 handler/user/create.go 中 Create() 的逻辑，更新后
的内容⻅ demo07/handler/user/create.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo07/handler/user/create.go)

创建⽤户逻辑：

1. 从 HTTP 消息体获取参数（⽤户名和密码）

https://github.com/lexkong/apiserver_demos/blob/master/demo07/handler/user/create.go

2. 参数校验
3. 加密密码
4. 在数据库中添加数据记录
5. 返回结果（这⾥是⽤户名）

从 HTTP 消息体解析参数，前⾯⼩节已经介绍了。

参数校验这⾥⽤的是 gopkg.in/go-
playground/validator.v9 包（详⻅ go-
playground/validator (https://github.com/go-
playground/validator)），实际开发过程中，该包可能不能满⾜校
验需求，这时候可在程序中加⼊⾃⼰的校验逻辑，⽐如在
handler/user/creater.go 中添加校验函数 checkParam：

package user

import (
 ...
)

// Create creates a new user account.
func Create(c *gin.Context) {
 log.Info("User Create function called.",
lager.Data{"X-Request-Id": util.GetReqID(c)})
 var r CreateRequest
 if err := c.Bind(&r); err != nil {
 SendResponse(c, errno.ErrBind, nil)
 return
 }

 if err := r.checkParam(); err != nil {
 SendResponse(c, err, nil)
 return

https://github.com/go-playground/validator

 }
 ...
}

func (r *CreateRequest) checkParam() error {
 if r.Username == "" {
 return errno.New(errno.ErrValidation,
nil).Add("username is empty.")
 }

 if r.Password == "" {
 return errno.New(errno.ErrValidation,
nil).Add("password is empty.")
 }

 return nil
}

例⼦通过 Encrypt() 对密码进⾏加密：

// Encrypt the user password.
func (u *UserModel) Encrypt() (err error) {
 u.Password, err = auth.Encrypt(u.Password)
 return
}

Encrypt() 函数引⽤ auth.Encrypt() 来进⾏密码加密，具体实
现⻅ demo07/pkg/auth/auth.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo07/pkg/auth/auth.go)

最后例⼦通过 u.Create() 函数来向数据库中添加记录，ORM ⽤
的是 gorm，gorm 详细⽤法请参考 GORM 指南 (http:
晰//gorm.io/zh_CN/docs/index.html)。在 Create() 函数中引

https://github.com/lexkong/apiserver_demos/blob/master/demo07/pkg/auth/auth.go
http:%E6%99%B0//gorm.io/zh_CN/docs/index.html

⽤的数据库实例是 DB.Self，该实例在 API 启动之前已经完成初始
化。DB 是个全局变量，可以直接引⽤。

在实际开发中，为了安全，数据库中是禁⽌保存密码的
明⽂信息的，密码需要加密保存。

笔者将接收和处理相关的 Go 结构体统⼀放在
handler/user/user.go ⽂件中，这样可以使程序结
构更清晰，功能更聚焦。当然每个⼈习惯不⼀样，读者
根据⾃⼰的习惯放置即可。handler/user/user.go
对 UserInfo 结构体的处理，也出于相同的⽬的。

删除⽤户

删除⽤户代码详⻅ demo07/handler/user/delete.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo07/handler/user/delete.go)

删除时，⾸先根据 URL 路径 DELETE
http://127.0.0.1/v1/user/1 解析出 id 的值 1，该 id 实际上
就是数据库中的 id 索引，调⽤ model.DeleteUser() 函数删除，
函数详⻅ demo07/model/user.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo07/model/user.go)

更新⽤户

更新⽤户代码详⻅ demo07/handler/user/update.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo07/handler/user/update.go)

更新⽤户逻辑跟创建⽤户差不多，在更新完数据库字段后，需要指定
gorm model 中的 id 字段的值，因为 gorm 在更新时默认是按照
id 来匹配记录的。通过解析 PUT
http://127.0.0.1/v1/user/1 来获取 id。

https://github.com/lexkong/apiserver_demos/blob/master/demo07/handler/user/delete.go
https://github.com/lexkong/apiserver_demos/blob/master/demo07/model/user.go
https://github.com/lexkong/apiserver_demos/blob/master/demo07/handler/user/update.go

查询⽤户列表

查询⽤户列表代码详⻅ demo07/handler/user/list.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo07/handler/user/list.go)

⼀般在 handler 中主要做解析参数、返回数据操作，简单的逻辑也
可以在 handler 中做，像新增⽤户、删除⽤户、更新⽤户，代码量
不⼤，所以也可以放在 handler 中。有些代码量很⼤的逻辑就不适
合放在 handler 中，因为这样会导致 handler 逻辑不是很清晰，这
时候实际处理的部分通常放在 service 包中。⽐如本例的
LisUser() 函数：

package user

import (
 "apiserver/service"
 ...
)

// List list the users in the database.
func List(c *gin.Context) {
 ...
 infos, count, err :=
service.ListUser(r.Username, r.Offset, r.Limit)
 if err != nil {
 SendResponse(c, err, nil)
 return
 }
 ...
}

https://github.com/lexkong/apiserver_demos/blob/master/demo07/handler/user/list.go

查询⼀个 REST 资源列表，通常需要做分⻚，如果不做分⻚返回的列
表过多，会导致 API 响应很慢，前端体验也不好。本例中的查询函
数做了分⻚，收到的请求中传⼊的 offset 和 limit 参数，分别对
应于 MySQL 的 offset 和 limit。

service.ListUser() 函数⽤来做具体的查询处理，代码详⻅
demo07/service/service.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo07/service/service.go)

在 ListUser() 函数中⽤了 sync 包来做并⾏查询，以使响应延时
更⼩。在实际开发中，查询数据后，通常需要对数据做⼀些处理，⽐
如 ListUser() 函数中会对每个⽤户记录返回⼀个 sayHello 字
段。sayHello 只是简单输出了⼀个 Hello shortId 字符串，其中
shortId 是通过 util.GenShortId() 来⽣成的（GenShortId 实
现详⻅ demo07/util/util.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo07/util/util.go)
像这类操作通常会增加 API 的响应延时，如果列表条⽬过多，列表
中的每个记录都要做⼀些类似的逻辑处理，这会使得整个 API 延时
很⾼，所以笔者在实际开发中通常会做并⾏处理。根据笔者经验，效
果提升⼗分明显。

读者应该已经注意到了，在 ListUser() 实现中，有 sync.Mutex
和 IdMap 等部分代码，使⽤ sync.Mutex 是因为在并发处理中，
更新同⼀个变量为了保证数据⼀致性，通常需要做锁处理。

使⽤ IdMap 是因为查询的列表通常需要按时间顺序进⾏排序，⼀般
数据库查询后的列表已经排过序了，但是为了减少延时，程序中⽤了
并发，这时候会打乱排序，所以通过 IdMap 来记录并发处理前的顺
序，处理后再重新复位。

获取指定⽤户的详细信息

https://github.com/lexkong/apiserver_demos/blob/master/demo07/service/service.go
https://github.com/lexkong/apiserver_demos/blob/master/demo07/util/util.go

代码详⻅ demo07/handler/user/get.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo07/handler/user/get.go)

获取指定⽤户信息时，⾸先根据 URL 路径 GET
http://127.0.0.1/v1/user/admin 解析出 username 的值
admin，然后调⽤ model.GetUser() 函数查询该⽤户的数据库记
录并返回，函数详⻅ demo07/model/user.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo07/model/user.go)

编译并运⾏

1. 下载 apiserver_demos 源码包（如前⾯已经下载过，请忽略
此步骤）

$ git clone
https://github.com/lexkong/apiserver_demos

2. 将 apiserver_demos/demo07 复制为
$GOPATH/src/apiserver

$ cp -a apiserver_demos/demo07/
$GOPATH/src/apiserver

3. 在 apiserver ⽬录下编译源码

$ cd $GOPATH/src/apiserver
$ gofmt -w .
$ go tool vet .
$ go build -v .

创建⽤户

https://github.com/lexkong/apiserver_demos/blob/master/demo07/handler/user/get.go
https://github.com/lexkong/apiserver_demos/blob/master/demo07/model/user.go

$ curl -XPOST -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user -
d'{"username":"kong","password":"kong123"}'

{
 "code": 0,
 "message": "OK",
 "data": {
 "username": "kong"
 }
}

查询⽤户列表

$ curl -XGET -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user -d'{"offset": 0,
"limit": 20}'

{
 "code": 0,
 "message": "OK",
 "data": {
 "totalCount": 2,
 "userList": [
 {
 "id": 2,
 "username": "kong",
 "sayHello": "Hello qhXO5iIig",
 "password":
"$2a$10$vE9jG71oyzstWVwB/QfU3u00Pxb.ye8hFIDvnyw60
nHBv/xsJZoUO",
 "createdAt": "2018-06-02 14:47:54",
 "updatedAt": "2018-06-02 14:47:54"

 },
 {
 "id": 0,
 "username": "admin",
 "sayHello": "Hello qhXO5iSmgz",
 "password":
"$2a$10$veGcArz47VGj7l9xN7g2iuT9TF21jLI1YGXarGzvA
RNdnt4inC9PG",
 "createdAt": "2018-05-28 00:25:33",
 "updatedAt": "2018-05-28 00:25:33"
 }
]
 }
}

可以看到，新增了⼀个⽤户 kong，数据库 id 索引为 2。admin ⽤
户是上⼀节中初始化数据库时初始化的。

笔者建议在 API 设计时，对资源列表进⾏分⻚。

获取⽤户详细信息

$ curl -XGET -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user/kong

{
 "code": 0,
 "message": "OK",
 "data": {
 "username": "kong",
 "password":
"$2a$10$vE9jG71oyzstWVwB/QfU3u00Pxb.ye8hFIDvnyw60
nHBv/xsJZoUO"
 }
}

更新⽤户

在 查询⽤户列表 部分，会返回⽤户的数据库索引。例如，⽤户
kong 的数据库 id 索引是 2，所以这⾥调⽤如下 URL 更新 kong ⽤
户：

$ curl -XPUT -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user/2 -
d'{"username":"kong","password":"kongmodify"}'

{
 "code": 0,
 "message": "OK",
 "data": null
}

获取 kong ⽤户信息：

$ curl -XGET -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user/kong

{
 "code": 0,
 "message": "OK",
 "data": {
 "username": "kong",
 "password":
"$2a$10$E0kwtmtLZbwW/bDQ8qI8e.eHPqhQOW9tvjwpyo/p0
5f/f4Qvr3OmS"
 }
}

可以看到密码已经改变（旧密码为
$2a$10$vE9jG71oyzstWVwB/QfU3u00Pxb.ye8hFIDvnyw60nHBv/xsJZoUO

删除⽤户

在 查询⽤户列表 部分，会返回⽤户的数据库索引。例如，⽤户
kong 的数据库 id 索引是 2，所以这⾥调⽤如下 URL 删除 kong ⽤
户：

$ curl -XDELETE -H "Content-Type:
application/json" http://127.0.0.1:8080/v1/user/2

{
 "code": 0,
 "message": "OK",
 "data": null
}

获取⽤户列表：

$ curl -XGET -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user -d'{"offset": 0,
"limit": 20}'

{
 "code": 0,
 "message": "OK",
 "data": {
 "totalCount": 1,
 "userList": [
 {
 "id": 0,
 "username": "admin",
 "sayHello": "Hello EnqntiSig",
 "password":
"$2a$10$veGcArz47VGj7l9xN7g2iuT9TF21jLI1YGXarGzvA
RNdnt4inC9PG",
 "createdAt": "2018-05-28 00:25:33",
 "updatedAt": "2018-05-28 00:25:33"
 }
]
 }
}

可以看到⽤户 kong 未出现在⽤户列表中，说明他已被成功删除。

⼩结

本⼩节通过对⽤户增删改查和查询列表的操作，介绍了实际开发中如
何对 REST 资源进⾏操作，并结合笔者的实际开发经验给出了⼀些开
发习惯和建议。

