
API 身份验证
本节核⼼内容

介绍 API 身份验证的常⽤机制
介绍如何进⾏ API 身份验证

本⼩节源码下载路径：demo09
(https://github.com/lexkong/apiserver_demos/tree/master/demo09)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo08
(https://github.com/lexkong/apiserver_demos/tree/master/demo08)
来开发的。

API 身份验证

在典型业务场景中，为了区分⽤户和安全保密，必须对 API 请求进
⾏鉴权，
但是不能要求每⼀个请求都进⾏登录操作。合理做法是，在第⼀次登
录之后产⽣⼀个有⼀定有效期的 token，并将其存储于浏览器的
Cookie 或 LocalStorage 之中，之后的请求都携带该 token ，请求
到达服务器端后，服务器端⽤该 token 对请求进⾏鉴权。在第⼀次
登录之后，服务器会将这个 token ⽤⽂件、数据库或缓存服务器等
⽅法存下来，⽤于之后请求中的⽐对。或者，更简单的⽅法是，直接
⽤密钥对⽤户信息和时间戳进⾏签名对称加密，这样就可以省下额外
的存储，也可以减少每⼀次请求时对数据库的查询压⼒。这种⽅式，

https://github.com/lexkong/apiserver_demos/tree/master/demo09
https://github.com/lexkong/apiserver_demos/tree/master/demo08

在业界已经有⼀种标准的实现⽅式，该⽅式被称为 JSON Web
Token（JWT，⾳同 jot，详⻅ JWT RFC 7519
(https://tools.ietf.org/html/rfc7519)）。

token 的意思是“令牌”，⾥⾯包含了⽤于认证的信息。这
⾥的 token 是指 JSON Web Token（JWT）。

JWT 简介

JWT 认证流程

1. 客户端使⽤⽤户名和密码请求登录
2. 服务端收到请求后会去验证⽤户名和密码，如果⽤户名和密码

https://tools.ietf.org/html/rfc7519

跟数据库记录不⼀致则验证失败，如果⼀致则验证通过，服务
端会签发⼀个 Token 返回给客户端

3. 客户端收到请求后会将 Token 缓存起来，⽐如放在浏览器
Cookie 中或者本地存储中，之后每次请求都会携带该 Token

4. 服务端收到请求后会验证请求中携带的 Token，验证通过则进
⾏业务逻辑处理并成功返回数据

在 JWT 中，Token 有三部分组成，中间⽤ . 隔开，并使⽤ Base64
编码：

header
payload
signature

如下是 JWT 中的⼀个 Token 示例：

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE1
MjgwMTY5MjIsImlkIjowLCJuYmYiOjE1MjgwMTY5MjIsInVzZ
XJuYW1lIjoiYWRtaW4ifQ.LjxrK9DuAwAzUD8-
9v43NzWBN7HXsSLfebw92DKd1JQ

header 介绍

JWT Token 的 header 中，包含两部分信息：

1. Token 的类型
2. Token 所使⽤的加密算法

例如：

{
 "typ": "JWT",
 "alg": "HS256"
}

该例说明 Token 类型是 JWT，加密算法是 HS256（alg 算法可以有
多种）。

Payload 载荷介绍

Payload 中携带 Token 的具体内容，⾥⾯有⼀些标准的字段，当然
你也可以添加额外的字段，来表达更丰富的信息，可以⽤这些信息来
做更丰富的处理，⽐如记录请求⽤户名，标准字段有：

iss：JWT Token 的签发者
sub：主题
exp：JWT Token 过期时间
aud：接收 JWT Token 的⼀⽅
iat：JWT Token 签发时间
nbf：JWT Token ⽣效时间
jti：JWT Token ID

本例中的 payload 内容为：

{
 "id": 2,
 "username": "kong",
 "nbf": 1527931805,
 "iat": 1527931805
}

Signature 签名介绍

Signature 是 Token 的签名部分，通过如下⽅式⽣成：

1. ⽤ Base64 对 header.payload 进⾏编码
2. ⽤ Secret 对编码后的内容进⾏加密，加密后的内容即为

Signature

Secret 相当于⼀个密码，存储在服务端，⼀般通过配置⽂件来配置
Secret 的值，本例中是配置在 conf/config.yaml 配置⽂件中:

最后⽣成的 Token 像这样：

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE1
MjgwMTY5MjIsImlkIjowLCJuYmYiOjE1MjgwMTY5MjIsInVzZ
XJuYW1lIjoiYWRtaW4ifQ.LjxrK9DuAwAzUD8-
9v43NzWBN7HXsSLfebw92DKd1JQ

签名后服务端会返回⽣成的 Token，客户端下次请求会携带该
Token，服务端收到 Token 后会解析出 header.payload，然后⽤
相同的加密算法和密码对 header.payload 再进⾏⼀次加密，并对⽐
加密后的 Token 和收到的 Token 是否相同，如果相同则验证通
过，不相同则返回 HTTP 401 Unauthorized 的错误。

详细的 JWT 介绍参考 JWT – 基于 Token 的身份验证
(https://blog.csdn.net/qq_28098067/article/details/52036493)

如何进⾏ API 身份验证

API 身份认证包括两步：

https://blog.csdn.net/qq_28098067/article/details/52036493

1. 签发 token
2. API 添加认证 middleware

签发 token

⾸先要实现登录接⼝。在登录接⼝中采⽤明⽂校验⽤户名密码的⽅
式，登录成功之后再产⽣ token。在 router/router.go ⽂件中
添加登录⼊⼝：

// api for authentication functionalities
g.POST("/login", user.Login)

在 handler/user/login.go（详⻅
demo09/handler/user/login.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo09/handler/user/login.go)
中添加 login 的具体实现：

1. 解析⽤户名和密码
2. 通过 auth.Compare() 对⽐密码是否是数据库保存的密码，
如果不是，返回 errno.ErrPasswordIncorrect 错误

3. 如果相同，授权通过，通过 token.Sign() 签发 token 并返
回

auth.Compare() 的实现详⻅
demo09/pkg/auth/auth.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo09/pkg/auth/auth.go)

token.Sign() 的实现详⻅
demo09/pkg/token/token.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo09/pkg/token/token.go)

API 添加认证 middleware

https://github.com/lexkong/apiserver_demos/blob/master/demo09/handler/user/login.go
https://github.com/lexkong/apiserver_demos/blob/master/demo09/pkg/auth/auth.go
https://github.com/lexkong/apiserver_demos/blob/master/demo09/pkg/token/token.go

在 router/router.go 中对 user handler 添加授权
middleware：

通过该 middleware，所有对 /v1/user 路径的请求，都会经过
middleware.AuthMiddleware() 中间件的处理：token 校
验。middleware.AuthMiddleware() 函数是通过调⽤
token.ParseRequest() 来进⾏ token 校验的。

middleware.AuthMiddleware() 实现详⻅
demo09/router/middleware/auth.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo09/router/middleware/auth.go)

token.ParseRequest() 实现详⻅
demo09/pkg/token/token.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo09/pkg/token/token.go)

编译并测试

1. 下载 apiserver_demos 源码包（如前⾯已经下载过，请忽略
此步骤）

$ git clone
https://github.com/lexkong/apiserver_demos

https://github.com/lexkong/apiserver_demos/blob/master/demo09/router/middleware/auth.go
https://github.com/lexkong/apiserver_demos/blob/master/demo09/pkg/token/token.go

2. 将 apiserver_demos/demo09 复制
为$GOPATH/src/apiserver

$ cp -a apiserver_demos/demo09/
$GOPATH/src/apiserver

3. 在 apiserver ⽬录下编译源码

$ cd $GOPATH/src/apiserver
$ gofmt -w .
$ go tool vet .
$ go build -v .

上⽂已经介绍过，API 身份验证⾸先需要登录，登录成功后会签发
token，之后请求时在 HTTP Header 中带上 token 即可。

1. ⽤户登录

$ curl -XPOST -H "Content-Type: application/json"
http://127.0.0.1:8080/login -
d'{"username":"admin","password":"admin"}'

{
 "code": 0,
 "message": "OK",
 "data": {
 "token":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE
1MjgwMTY5MjIsImlkIjowLCJuYmYiOjE1MjgwMTY5MjIsInVz
ZXJuYW1lIjoiYWRtaW4ifQ.LjxrK9DuAwAzUD8-
9v43NzWBN7HXsSLfebw92DKd1JQ"
 }
}

返回的 token 为
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE1MjgwMTY5MjIsImlkIjowLCJuYmYiOjE1MjgwMTY5MjIsInVzZXJuYW1lIjoiYWRtaW4ifQ.LjxrK9DuAwAzUD8-
9v43NzWBN7HXsSLfebw92DKd1JQ。

2. 请求时如果不携带签发的 token，会禁⽌请求

$ curl -XPOST -H "Content-Type: application/json"
http://127.0.0.1:8080/v1/user -
d'{"username":"user1","password":"user1234"}'

{
 "code": 20103,
 "message": "The token was invalid.",
 "data": null
}

3. 请求时携带 token

$ curl -XPOST -H "Authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE1
MjgwMTY5MjIsImlkIjowLCJuYmYiOjE1MjgwMTY5MjIsInVzZ
XJuYW1lIjoiYWRtaW4ifQ.LjxrK9DuAwAzUD8-
9v43NzWBN7HXsSLfebw92DKd1JQ" -H "Content-Type:
application/json" http://127.0.0.1:8080/v1/user -
d'{"username":"user1","password":"user1234"}'

{
 "code": 0,
 "message": "OK",
 "data": {
 "username": "user1"
 }
}

可以看到携带 token 后验证通过，成功创建⽤户。通过 HTTP
Header Authorization: Bearer $token 来携带 token。携带
token 后不需要再次查询数据库核对密码，即可完成授权。

⼩结

本⼩节介绍了 API 身份验证的相关知识。apiserver 采⽤的认证⽅式
为 JWT，⼩节简单介绍了 JWT 的认证流程，并通过实例展示了具体
如何进⾏ JWT 认证。

通过以上⼩节的学习，读者已经可以进⾏基本的 API 开发了，下⼀
节开始介绍 API 开发的进阶内容。

