
给 API 命令增加版本功能
本节核⼼内容

如何给 apiserver 增加版本功能

本⼩节源码下载路径：demo12
(https://github.com/lexkong/apiserver_demos/tree/master/demo12)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo11
(https://github.com/lexkong/apiserver_demos/tree/master/demo11)
来开发的。

为什么需要版本

在实际开发中，当开发完⼀个 apiserver 特性后，会编译 apiserver
⼆进制⽂件并发布到⽣产环境，很多时候为了定位问题和出于安全⽬
的（不能发错版本），我们需要知道当前 apiserver 的版本，以及⼀
些编译时候的信息，如编译时 Go 的版本、Git ⽬录是否 clean，以
及基于哪个 git commmit 来编译的。在⼀个编译好的可执⾏程序
中，我们通常可以⽤类似 ./app_name -v 的⽅式来获取版本信
息。

我们可以将这些信息写在配置⽂件中，程序运⾏时从配置⽂件中取得
这些信息进⾏显示。但是在部署程序时，除了⼆进制⽂件还需要额外
的配置⽂件，不是很⽅便。或者将这些信息写⼊代码中，这样不需要

https://github.com/lexkong/apiserver_demos/tree/master/demo12
https://github.com/lexkong/apiserver_demos/tree/master/demo11

额外的配置，但要在每次编译时修改代码⽂件，也⽐较麻烦。Go 官
⽅提供了⼀种更好的⽅式：通过 -ldflags -X
importpath.name=value（详⻅ -ldflags -X
importpath.name=value (https://golang.org/cmd/link/)）来
给程序⾃动添加版本信息。

在实际开发中，绝⼤部分都是⽤ Git 来做源码版本管理
的，所以 apiserver 的版本功能也基于 Git。

给 apiserver 添加版本功能

假设我们程序发布的流程是这样：

1. 编码完成，提交测试⼯程师测试
2. 测试⼯程师测试代码，提交 bug，更改 bug 并重新测试后验
证通过

3. 开发⼈员把验证通过的代码合并到 master 分⽀，并打上版本
号：git tag -a v1.0.0

4. 开发⼈员将 v1.0.0 版本发布到⽣产环境

最终发布后，我们希望通过 ./apiserver -v 参数提供如下版本信
息：

版本号
git commit
git tree 在编译时的状态
构建时间
go 版本
go 编译器
运⾏平台

https://golang.org/cmd/link/

为了实现这些功能，我们⾸先要在 main 函数中添加⽤于接收 -v 参
数的⼊⼝（详⻅ demo12/main.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo12/main.go)

https://github.com/lexkong/apiserver_demos/blob/master/demo12/main.go

package main

import (
 "encoding/json"
 "fmt"
 "os"
 ...
 v "apiserver/pkg/version"
 ...
)

var (
 version = pflag.BoolP("version", "v", false,
"show version info.")
)

func main() {
 pflag.Parse()
 if *version {
 v := v.Get()
 marshalled, err := json.MarshalIndent(&v,
"", " ")
 if err != nil {
 fmt.Printf("%v\n", err)
 os.Exit(1)
 }

 fmt.Println(string(marshalled))
 return
 }
 ...
}

通过 pflag 来解析命令⾏上传⼊的 -v 参数。

通过 pkg/version 的 Get() 函数来获取 apiserver 的版本信息。

通过 json.MarshalIndent 来格式化打印版本信息。

pkg/version 的 Get() 函数实现为（详⻅
demo12/pkg/version
(https://github.com/lexkong/apiserver_demos/tree/master/demo12/pkg/version)

func Get() Info {
 return Info{
 GitTag: gitTag,
 GitCommit: gitCommit,
 GitTreeState: gitTreeState,
 BuildDate: buildDate,
 GoVersion: runtime.Version(),
 Compiler: runtime.Compiler,
 Platform: fmt.Sprintf("%s/%s",
runtime.GOOS, runtime.GOARCH),
 }
}

其中 gitTag、gitCommit、gitTreeState 等变量的值是通过 -
ldflags -X importpath.name=value 在编译时传到程序中
的。为此我们需要在编译时传⼊这些信息，在 Makefile 中添加如下
信息（详⻅ demo12/Makefile
(https://github.com/lexkong/apiserver_demos/blob/master/demo12/Makefile)

https://github.com/lexkong/apiserver_demos/tree/master/demo12/pkg/version
https://github.com/lexkong/apiserver_demos/blob/master/demo12/Makefile

SHELL := /bin/bash
BASEDIR = $(shell pwd)

build with verison infos
versionDir = "apiserver/pkg/version"
gitTag = $(shell if ["`git describe --tags --
abbrev=0 2>/dev/null`" != ""];then git describe
--tags --abbrev=0; else git log --
pretty=format:'%h' -n 1; fi)
buildDate = $(shell TZ=Asia/Shanghai date
+%FT%T%z)
gitCommit = $(shell git log --pretty=format:'%H'
-n 1)
gitTreeState = $(shell if git status|grep -q
'clean';then echo clean; else echo dirty; fi)

ldflags="-w -X ${versionDir}.gitTag=${gitTag} -X
${versionDir}.buildDate=${buildDate} -X
${versionDir}.gitCommit=${gitCommit} -X
${versionDir}.gitTreeState=${gitTreeState}"

并在 go build 中添加这些 flag：

go build -v -ldflags ${ldflags} .

-w 为去掉调试信息（⽆法使⽤ gdb 调试），这样可以
使编译后的⼆进制⽂件更⼩。

编译并测试

1. 下载 apiserver_demos 源码包（如前⾯已经下载过，请忽略

此步骤）

$ git clone
https://github.com/lexkong/apiserver_demos

2. 将 apiserver_demos/demo12 复制为
$GOPATH/src/apiserver

$ cp -a apiserver_demos/demo12/
$GOPATH/src/apiserver

3. 在 apiserver ⽬录下编译源码

$ cd $GOPATH/src/apiserver
$ make

查看 apiserver 版本

$./apiserver -v

{
 "gitTag": "7322949",
 "gitCommit":
"732294928b3c4dff5b898fde0bb5313752e1173e",
 "gitTreeState": "dirty",
 "buildDate": "2018-06-05T07:43:26+0800",
 "goVersion": "go1.10.2",
 "compiler": "gc",
 "platform": "linux/amd64"
}

可以看到 ./apiserver -v 输出了我们需要的版本信息。

在上⼀⼩节中我们已经给 apiserver 添加过 Makefile
⽂件。

⼩结

本⼩节主要介绍如何⽤ Makefile 以及 Go 本身所⽀持的编译特性，
实现编译时⾃动⽣成版本号的功能。后续⼩节编译 API 源码均会通
过 make 来编译。

