
RESTful API 介绍
什么是 API

API（Application Programming Interface，应⽤程序编程接⼝）
是⼀些预先定义的函数或者接⼝，⽬的是提供应⽤程序与开发⼈员基
于某软件或硬件得以访问⼀组例程的能⼒，⽽⼜⽆须访问源码，或理
解内部⼯作机制的细节。

要实现⼀个 API 服务器，⾸先要考虑两个⽅⾯：API ⻛格和媒体类
型。Go 语⾔中常⽤的 API ⻛格是 RPC 和 REST，常⽤的媒体类型是
JSON、XML 和 Protobuf。在 Go API 开发中常⽤的组合是 gRPC +
Protobuf 和 REST + JSON。

REST 简介

REST 代表表现层状态转移（REpresentational State Transfer），
由 Roy Fielding 在他的 论⽂
(https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm)
中提出。REST 是⼀种软件架构⻛格，不是技术框架，REST 有⼀系
列规范，满⾜这些规范的 API 均可称为 RESTful API。REST 规范中
有如下⼏个核⼼：

1. REST 中⼀切实体都被抽象成资源，每个资源有⼀个唯⼀的标
识 —— URI，所有的⾏为都应该是在资源上的 CRUD 操作

2. 使⽤标准的⽅法来更改资源的状态，常⻅的操作有：资源的增
删改查操作

3. ⽆状态：这⾥的⽆状态是指每个 RESTful API 请求都包含了所
有⾜够完成本次操作的信息，服务器端⽆须保持 Session

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm


⽆状态对于服务端的弹性扩容是很重要的。

REST ⻛格虽然适⽤于很多传输协议，但在实际开发中，REST 由于
天⽣和 HTTP 协议相辅相成，因此 HTTP 协议已经成了实现
RESTful API 事实上的标准。在 HTTP 协议中通过 POST、
DELETE、PUT、GET ⽅法来对应 REST 资源的增、删、改、查操
作，具体的对应关系如下：

HTTP ⽅
法

⾏为 URI 示例说明

GET 获取资源列表 /users 获取⽤户列表

GET 获取⼀个具体的资源 /users/admin获取 admin ⽤户的
详细信息

POST 创建⼀个新的资源 /users 创建⼀个新⽤户

PUT 以整体的⽅式更新⼀
个资源

/users/1 更新 id 为 1 的⽤户

DELETE 删除服务器上的⼀个
资源

/users/1 删除 id 为 1 的⽤户

RPC 简介

根据维基百科的定义：远程过程调⽤（Remote Procedure Call，
RPC）是⼀个计算机通信协议。该协议允许运⾏于⼀台计算机的程序
调⽤另⼀台计算机的⼦程序，⽽程序员⽆须额外地为这个交互作⽤编
程。

通俗来讲，就是服务端实现了⼀个函数，客户端使⽤ RPC 框架提供
的接⼝，调⽤这个函数的实现，并获取返回值。RPC 屏蔽了底层的
⽹络通信细节，使得开发⼈员⽆须关注⽹络编程的细节，⽽将更多的
时间和精⼒放在业务逻辑本身的实现上，从⽽提⾼开发效率。



RPC 的调⽤过程如下（图⽚来⾃ How RPC Works
(https://docs.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-server-
2003/cc738291(v=ws.10))）：

1. Client 通过本地调⽤，调⽤ Client Stub
2. Client Stub 将参数打包（也叫 Marshalling）成⼀个消息，然
后发送这个消息

3. Client 所在的 OS 将消息发送给 Server
4. Server 端接收到消息后，将消息传递给 Server Stub
5. Server Stub 将消息解包（也叫 Unmarshalling）得到参数
6. Server Stub 调⽤服务端的⼦程序（函数），处理完后，将最
终结果按照相反的步骤返回给 Client

Stub 负责调⽤参数和返回值的流化（serialization）、
参数的打包解包，以及负责⽹络层的通信。Client 端⼀
般叫 Stub，Server 端⼀般叫 Skeleton。

REST vs RPC

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc738291(v=ws.10)


在做 API 服务器开发时，很多⼈都会遇到这个问题 —— 选择 REST
还是 RPC。RPC 相⽐ REST 的优点主要有 3 点：

1. RPC+Protobuf 采⽤的是 TCP 做传输协议，REST 直接使⽤
HTTP 做应⽤层协议，这种区别导致 REST 在调⽤性能上会⽐
RPC+Protobuf 低

2. RPC 不像 REST 那样，每⼀个操作都要抽象成对资源的增删改
查，在实际开发中，有很多操作很难抽象成资源，⽐如登录操
作。所以在实际开发中并不能严格按照 REST 规范来写 API，
RPC 就不存在这个问题

3. RPC 屏蔽⽹络细节、易⽤，和本地调⽤类似

这⾥的易⽤指的是调⽤⽅式上的易⽤性。在做 RPC 开发
时，开发过程很烦琐，需要先写⼀个 DSL 描述⽂件，然
后⽤代码⽣成器⽣成各种语⾔代码，当描述⽂件有更改
时，必须重新定义和编译，维护性差。

但是 REST 相较 RPC 也有很多优势：

1. 轻量级，简单易⽤，维护性和扩展性都⽐较好
2. REST 相对更规范，更标准，更通⽤，⽆论哪种语⾔都⽀持

HTTP 协议，可以对接外部很多系统，只要满⾜ HTTP 调⽤即
可，更适合对外，RPC 会有语⾔限制，不同语⾔的 RPC 调⽤
起来很麻烦

3. JSON 格式可读性更强，开发调试都很⽅便
4. 在开发过程中，如果严格按照 REST 规范来写 API，API 看起
来更清晰，更容易被⼤家理解

在实际开发中，严格按照 REST 规范来写很难，只能尽
可能 RESTful 化。



其实业界普遍采⽤的做法是，内部系统之间调⽤⽤ RPC，对外⽤
REST，因为内部系统之间可能调⽤很频繁，需要 RPC 的⾼性能⽀
撑。对外⽤ REST 更易理解，更通⽤些。当然以现有的服务器性能，
如果两个系统间调⽤不是特别频繁，对性能要求不是⾮常⾼，以笔者
的开发经验来看，REST 的性能完全可以满⾜。本⼩册不是讨论微服
务，所以不存在微服务之间的⾼频调⽤场景，此外 REST 在实际开发
中，能够满⾜绝⼤部分的需求场景，所以 RPC 的性能优势可以忽
略，相反基于 REST 的其他优势，笔者更倾向于⽤ REST 来构建 API
服务器，本⼩册正是⽤ REST ⻛格来构建 API 的。

媒体类型选择

媒体类型是独⽴于平台的类型，设计⽤于分布式系统间的通信，媒体
类型⽤于传递信息，⼀个正式的规范定义了这些信息应该如何表示。
HTTP 的 REST 能够提供多种不同的响应形式，常⻅的是 XML 和
JSON。JSON ⽆论从形式上还是使⽤⽅法上都更简单。相⽐ XML，
JSON 的内容更加紧凑，数据展现形式直观易懂，开发测试都⾮常⽅
便，所以在媒体类型选择上，选择了 JSON 格式，这也是很多⼤公司
所采⽤的格式。

⼩结

本⼩节介绍了软件架构中 API 的实现⽅式，并简单介绍了相应的技
术，通过对⽐，得出本⼩册所采⽤的实现⽅式：API ⻛格采⽤
REST，媒体类型选择 JSON。通过本⼩节的学习，读者可以了解⼩册
所构建 API 服务器核⼼技术的选型和原因。


