
go test 测试你的代码
在实际开发中，不仅要开发功能，更重要的是确保这些功能稳定可
靠，并且拥有⼀个不错的性能，要确保这些就要对代码进⾏测试，开
发⼈员通常会进⾏单元测试和性能测试。不同的语⾔通常都有⾃⼰的
测试包/模块，Go 语⾔也⼀样，在 Go 中可以通过 testing 包对代
码进⾏单元和性能测试，下⾯就来详细介绍。

本节核⼼内容

如何进⾏单元测试
如何进⾏压⼒/性能测试
如何进⾏性能分析

本⼩节源码下载路径：demo15
(https://github.com/lexkong/apiserver_demos/tree/master/demo15)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo14
(https://github.com/lexkong/apiserver_demos/tree/master/demo14)
来开发的。

Go 语⾔测试⽀持

Go 语⾔有⾃带的测试框架 testing，可以⽤来实现单元测试和性能
测试，通过 go test 命令来执⾏单元测试和性能测试。

https://github.com/lexkong/apiserver_demos/tree/master/demo15
https://github.com/lexkong/apiserver_demos/tree/master/demo14

go test 执⾏测试⽤例时，是以 go 包为单位进⾏测试的。执⾏时
需要指定包名，⽐如：go test 包名，如果没有指定包名，默认会
选择执⾏命令时所在的包。go test 在执⾏时会遍历以 _test.go
结尾的源码⽂件，执⾏其中以 Test、Benchmark、Example 开头
的测试函数。其中源码⽂件需要满⾜以下规范：

⽂件名必须是 _test.go 结尾，跟源⽂件在同⼀个包。
测试⽤例函数必须以 Test、Benchmark、Example 开头
执⾏测试⽤例时的顺序，会按照源码中的顺序依次执⾏
单元测试函数 TestXxx() 的参数是 testing.T，可以使⽤该类
型来记录错误或测试状态
性能测试函数 BenchmarkXxx() 的参数是 testing.B，函数内
以 b.N 作为循环次数，其中 N 会动态变化
示例函数 ExampleXxx() 没有参数，执⾏完会将输出与注释
// Output: 进⾏对⽐
测试函数原型：func TestXxx(t *testing.T)，Xxx 部分为任
意字⺟数字组合，⾸字⺟⼤写，例如： TestgenShortId 是
错误的函数名，TestGenShortId 是正确的函数名
通过调⽤ testing.T 的 Error、Errorf、FailNow、Fatal、
FatalIf ⽅法来说明测试不通过，通过调⽤ Log、Logf ⽅法来
记录测试信息：

t.Log t.Logf # 正常信息
t.Error t.Errorf # 测试失败信息
t.Fatal t.Fatalf # 致命错误，测试程序退出的信息
t.Fail # 当前测试标记为失败
t.Failed # 查看失败标记
t.FailNow # 标记失败，并终⽌当前测试函数的执⾏，需
要注意的是，我们只能在运⾏测试函数的 Goroutine 中调
⽤ t.FailNow ⽅法，⽽不能在我们在测试代码创建出的
Goroutine 中调⽤它
t.Skip # 调⽤ t.Skip ⽅法相当于先后对 t.Log
和 t.SkipNow ⽅法进⾏调⽤，⽽调⽤ t.Skipf ⽅法则相
当于先后对 t.Logf 和 t.SkipNow ⽅法进⾏调⽤。⽅法
t.Skipped 的结果值会告知我们当前的测试是否已被忽略
t.Parallel # 标记为可并⾏运算

编写测试⽤例（对 GenShortId 函数进⾏单
元测试）

1. 在 util ⽬录下创建⽂件 util_test.go，内容为：

package util

import (
 "testing"
)

func TestGenShortId(t *testing.T) {
 shortId, err := GenShortId()
 if shortId == "" || err != nil {
 t.Error("GenShortId failed!")
 }

 t.Log("GenShortId test pass")
}

从⽤例可以看出，如果 GenShortId() 返回的 shortId 为空或者
err 不为空，则调⽤ t.Error() 函数标明该⽤例测试不通过。

执⾏⽤例

在 util ⽬录下执⾏命令 go test：

$ cd util/
$ go test
PASS
ok apiserver/util 0.006s

要查看更详细的执⾏信息可以执⾏ go test -v：

$ go test -v
=== RUN TestGenShortId
--- PASS: TestGenShortId (0.00s)
 util_test.go:13: GenShortId test pass
PASS
ok apiserver/util 0.006s

根据 go test 的输出可以知道 TestGenShortId ⽤例测试通过。

如果要执⾏测试 N 次可以使⽤ -count N：

$ go test -v -count 2
=== RUN TestGenShortId
--- PASS: TestGenShortId (0.00s)
 util_test.go:13: GenShortId test pass
=== RUN TestGenShortId
--- PASS: TestGenShortId (0.00s)
 util_test.go:13: GenShortId test pass
PASS
ok apiserver/util 0.006s

编写性能测试⽤例

在 util/util_test.go 测试⽂件中，新增两个性能测试函
数：BenchmarkGenShortId() 和
BenchmarkGenShortIdTimeConsuming()（详⻅
demo15/util/util_test.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo15/util/util_test.go)

https://github.com/lexkong/apiserver_demos/blob/master/demo15/util/util_test.go

func BenchmarkGenShortId(b *testing.B) {
 for i := 0; i < b.N; i++ {
 GenShortId()
 }
}

func BenchmarkGenShortIdTimeConsuming(b
*testing.B) {
 b.StopTimer() // 调⽤该函数停⽌压⼒测试的时间计数

 shortId, err := GenShortId()
 if shortId == "" || err != nil {
 b.Error(err)
 }

 b.StartTimer() // 重新开始时间

 for i := 0; i < b.N; i++ {
 GenShortId()
 }
}

说明

性能测试函数名必须以 Benchmark 开头，如 BenchmarkXxx
或 Benchmark_xxx
go test 默认不会执⾏压⼒测试函数，需要通过指定参数 -
test.bench 来运⾏压⼒测试函数，-test.bench 后跟正则
表达式，如 go test -test.bench=".*" 表示执⾏所有的
压⼒测试函数
在压⼒测试中，需要在循环体中指定 testing.B.N 来循环执
⾏压⼒测试代码

执⾏压⼒测试

在 util ⽬录下执⾏命令 go test -test.bench=".*"：

$ go test -test.bench=".*"
goos: linux
goarch: amd64
pkg: apiserver/util
BenchmarkGenShortId-2 500000
2291 ns/op
BenchmarkGenShortIdTimeConsuming-2 500000
2333 ns/op
PASS
ok apiserver/util 2.373s

上⾯的结果显示，我们没有执⾏任何 TestXXX 的单元测试函
数，只执⾏了压⼒测试函数
第⼀条显示了 BenchmarkGenShortId 执⾏了 500000 次，
每次的执⾏平均时间是 2291 纳秒
第⼆条显示了 BenchmarkGenShortIdTimeConsuming 执
⾏了 500000，每次的平均执⾏时间是 2333 纳秒
最后⼀条显示总执⾏时间

BenchmarkGenShortIdTimeConsuming ⽐
BenchmarkGenShortId 多了两个调⽤
b.StopTimer() 和 b.StartTimer()。

b.StopTimer()：调⽤该函数停⽌压⼒测试的时
间计数
b.StartTimer()：重新开始时间

在 b.StopTimer() 和 b.StartTimer() 之间可以做
⼀些准备⼯作，这样这些时间不影响我们测试函数本身
的性能。

查看性能并⽣成函数调⽤图

1. 执⾏命令：

$ go test -bench=".*" -cpuprofile=cpu.profile
./util

上述命令会在当前⽬录下⽣成 cpu.profile 和 util.test ⽂
件。

2. 执⾏ go tool pprof util.test cpu.profile 查看性
能（进⼊交互界⾯后执⾏ top 指令）：

$ go tool pprof util.test cpu.profile

File: util.test
Type: cpu
Time: Jun 5, 2018 at 7:28pm (CST)
Duration: 4.93s, Total samples = 4.97s (100.78%)
Entering interactive mode (type "help" for

commands, "o" for options)
(pprof) top
Showing nodes accounting for 3480ms, 70.02% of
4970ms total
Dropped 34 nodes (cum <= 24.85ms)
Showing top 10 nodes out of 75
 flat flat% sum% cum cum%
 1890ms 38.03% 38.03% 1900ms 38.23%
syscall.Syscall
 500ms 10.06% 48.09% 620ms 12.47%
runtime.mallocgc
 240ms 4.83% 52.92% 3700ms 74.45%
vendor/github.com/teris-io/shortid.(*Abc).Encode
 150ms 3.02% 55.94% 200ms 4.02%
runtime.scanobject
 140ms 2.82% 58.75% 640ms 12.88%
runtime.makeslice
 140ms 2.82% 61.57% 280ms 5.63%
runtime.slicerunetostring
 120ms 2.41% 63.98% 120ms 2.41%
math.Log
 110ms 2.21% 66.20% 2430ms 48.89%
io.ReadAtLeast
 110ms 2.21% 68.41% 110ms 2.21%
runtime._ExternalCode
 80ms 1.61% 70.02% 140ms 2.82%
runtime.deferreturn
(pprof)

pprof 程序中最重要的命令就是 topN，此命令⽤于显示 profile ⽂
件中的最靠前的 N 个样本（sample），它的输出格式各字段的含义
依次是：

1. 采样点落在该函数中的总时间
2. 采样点落在该函数中的百分⽐
3. 上⼀项的累积百分⽐
4. 采样点落在该函数，以及被它调⽤的函数中的总时间
5. 采样点落在该函数，以及被它调⽤的函数中的总次数百分⽐
6. 函数名

此外，在 pprof 程序中还可以使⽤ svg 来⽣成函数调⽤关系图（需
要安装 graphviz），例如：

该调⽤图⽣成⽅法如下：

1. 安装 graphviz 命令

yum -y install graphviz.x86_64

2. 执⾏ go tool pprof ⽣成 svg 图：

$ go tool pprof util.test cpu.profile
File: util.test
Type: cpu
Time: Jun 5, 2018 at 7:28pm (CST)
Duration: 4.93s, Total samples = 4.97s (100.78%)
Entering interactive mode (type "help" for
commands, "o" for options)
(pprof) svg
Generating report in profile001.svg

svg ⼦命令会提示在 $GOPATH/src ⽬录下⽣成了⼀个 svg ⽂件
profile001.svg。

关于如何看懂 pprof 信息，请参考官⽅⽂档 Profiling
Go Programs (https://blog.golang.org/profiling-
go-programs)。

关于如何做性能分析，请参考郝林⼤神的⽂章 go tool
pprof
(https://github.com/hyper0x/go_command_tutorial/blob/master/0.12.md)

测试覆盖率

我们写单元测试的时候应该想得很全⾯，能够覆盖到所有的测试⽤
例，但有时也会漏过⼀些 case，go 提供了 cover ⼯具来统计测试
覆盖率。

go test -coverprofile=cover.out：在测试⽂件⽬录下运⾏
测试并统计测试覆盖率

https://blog.golang.org/profiling-go-programs
https://github.com/hyper0x/go_command_tutorial/blob/master/0.12.md

go tool cover -func=cover.out：分析覆盖率⽂件，可以看
出哪些函数没有测试，哪些函数内部的分⽀没有测试完全，cover ⼯
具会通过执⾏代码的⾏数与总⾏数的⽐例表示出覆盖率

测试覆盖率

$ go test -coverprofile=cover.out
PASS
coverage: 14.3% of statements
ok apiserver/util 0.006s
[api@centos util]$ go tool cover -func=cover.out
apiserver/util/util.go:8: GenShortId 100.0%
apiserver/util/util.go:12: GetReqID 0.0%
total: (statements) 14.3%

可以看到 GenShortId() 函数测试覆盖率为 100%，GetReqID()
测试覆盖率为 0%。

⼩结

本⼩节简单介绍了如何⽤ testing 包做单元和性能测试。在实际的开
发中，要养成编写单元测试代码的好习惯，在项⽬上线前，最好对⼀
些业务逻辑⽐较复杂的函数做⼀些性能测试，提前发现性能问题。

⾄于怎么去分析性能，⽐如查找耗时最久的函数等，笔者链接了郝林
⼤神专业的分析⽅法（go tool pprof
(https://github.com/hyper0x/go_command_tutorial/blob/master/0.12.md)
更深的分析技巧需要读者在实际开发中⾃⼰去探索。

https://github.com/hyper0x/go_command_tutorial/blob/master/0.12.md

