
Go 规范指南
说明

本⼩节是拓展内容，笔者会不定期更新 Go 规范指南，使该指南的内
容尽可能全，并保证规范的实⽤性。

说明：本指南参考了⽹络上各种 REST 最佳实践，结合
笔者的实际经验汇总⽽来。

Go 规范指南

1. 写完代码都必须格式化，保证代码优雅：gofmt goimports
2. 编译前先执⾏代码静态分析：go vet pathxxx/
3. package 名字：包名与⽬录保持⼀致，尽量有意义，简短，不
和标准库冲突， 全⼩写，不要有下划线

4. 竞态检测：go build –race (测试环境编译时加上 -race 选
项，⽣产环境必须去掉，因为 race 限制最多 goroutine 数量
为 8192 个)

5. 每⾏⻓度约定：⼀⾏不要太⻓，超过请使⽤换⾏展示，尽量保
持格式优雅；单个⽂件也不要太⼤，最好不要超过 500 ⾏

6. 多返回值最多返回三个，超过三个请使⽤ struct
7. 变量名采⽤驼峰法，不要有下划线，不要全部⼤写
8. 在逻辑处理中禁⽤ panic，除⾮你知道你在做什么
9. 错误处理的原则就是不能丢弃任何有返回 err 的调⽤，不要采
⽤_丢弃，必须全部处理。接收到错误，要么返回 err，要么实
在不⾏就 panic，或者使⽤ log 记录下来。
不要这样写:

if err != nil {

 // error handling

} else {

 // normal code

}

⽽应该是:

if err != nil {

 // error handling

 return // or continue, etc.
}

// normal code

10. 常⽤的⾸字⺟缩写名词，使⽤全⼩写或者全⼤写，如 UIN URL
HTTP ID IP OK

11. Receiver:：⽤⼀两个字符，能够表示出类型，不要使⽤ me
self this

12. 参数传递:

对于少量数据，不要传递指针
对于⼤量数据的 struct 可以考虑使⽤指针
传⼊参数是 map，slice，chan，interface，string 不要传递
指针

13. 每个基础库都必须有实际可运⾏的例⼦, 基础库的接⼝都要有
单元测试⽤例

14. 不要在 for 循环⾥⾯使⽤ defer，defer只有在函数退出时才会
执⾏

15. panic 捕获只能到goroutine最顶层，每个⾃⼰启动的
goroutine，必须在⼊⼝处就捕获panic，并打印出详细的堆栈
信息

16. Go 的内置类型slice、map、chan都是引⽤，初次使⽤前，都
必须先⽤ make 分配好对象，不然会有空指针异常

17. 使⽤ map 时需要注意：map 初次使⽤，必须⽤ make 初始
化；map 是引⽤，不⽤担⼼赋值内存拷⻉；并发操作时，需要
加锁；range 遍历时顺序不确定，不可依赖；不能使⽤ slice、
map 和 func 作为 key

18. import 在多⾏的情况下，goimports 会⾃动帮你格式化，但
是我们这⾥还是规范⼀下 import 的⼀些规范，如果你在⼀个
⽂件⾥⾯引⼊了⼀个 package，还是建议采⽤如下格式：

import (
 "fmt"
)

如果你的包引⼊了三种类型的包，标准库包，程序内部包，第三⽅
包，建议采⽤如下⽅式进⾏组织你的包：

import (
 "encoding/json"
 "strings"

 "myproject/models"
 "myproject/controller"
 "myproject/utils"

 "github.com/astaxie/beego"
 "github.com/go-sql-driver/mysql"
)

有顺序的引⼊包，不同的类型采⽤空格分离，第⼀种实标准库，第⼆
是项⽬包，第三是第三⽅包。

19. 如果你的函数很短⼩，少于 10 ⾏代码，那么可以使⽤，不然
请直接使⽤类型，因为如果使⽤命名变量很容易引起隐藏的
bug。
当然如果是有多个相同类型的参数返回，那么命名参数可能更
清晰：

func (f *Foo) Location() (float64, float64,
error)

20. ⻓句⼦打印或者调⽤，使⽤参数进⾏格式化分⾏
我们在调⽤ fmt.Sprint 或者 log.Sprint 之类的函数时，
有时候会遇到很⻓的句⼦，我们需要在参数调⽤处进⾏多⾏分
割：

下⾯是错误的⽅式：

log.Printf(“A long format string: %s %d %d %s”,
myStringParameter, len(a),
 expected.Size,
defrobnicate(“Anotherlongstringparameter”,
 expected.Growth.Nanoseconds() /1e6))

应该是如下的⽅式：

log.Printf(
 “A long format string: %s %d %d %s”,
 myStringParameter,
 len(a),
 expected.Size,
 defrobnicate(
 “Anotherlongstringparameter”,
 expected.Growth.Nanoseconds()/1e6,
),
）

21. 注意闭包的调⽤
在循环中调⽤函数或者 goroutine ⽅法，⼀定要采⽤显示的变
量调⽤，不要在闭包函数⾥调⽤循环的参数

fori:=0;i<limit;i++{
 go func(){ DoSomething(i) }() //错误的做法
 go func(i int){ DoSomething(i) }(i)//正确的做法
}

22. recieved 是值类型还是指针类型
到底是采⽤值类型还是指针类型主要参考如下原则：

func(w Win) Tally(playerPlayer)int //w不会有任何
改变
func(w *Win) Tally(playerPlayer)int //w会改变数
据

23. struct 声明和初始化格式采⽤多⾏：
定义如下：

type User struct{
 Username string
 Email string
}

初始化如下：

u := User{
 Username: "astaxie",
 Email: "astaxie@gmail.com",
}

24. 变量命名

和结构体类似，变量名称⼀般遵循驼峰法，⾸字⺟根据访问控
制原则⼤写或者⼩写，但遇到特有名词时，需要遵循以下规
则：

如果变量为私有，且特有名词为⾸个单词，则使⽤⼩写，
如 apiClient
其它情况都应当使⽤该名词原有的写法，如 APIClient、
repoID、UserID
错误示例：UrlArray，应该写成 urlArray 或者
URLArray

若变量类型为 bool 类型，则名称应以 Has、Is、Can 或
Allow 开头

var isExist bool
var hasConflict bool
var canManage bool
var allowGitHook bool

25. 常量命名
常量均需使⽤全部⼤写字⺟组成，并使⽤下划线分词

const APP_VER = "1.0"

