
API 流程和代码结构
为了使读者在开始实战之前对 API 开发有个整体的了解，这⾥选择
了两个流程来介绍：

HTTP API 服务器启动流程
HTTP 请求处理流程

本⼩节也提前给出了程序代码结构图，让读者从宏观上了解将要构建
的 API 服务器的功能。

HTTP API 服务器启动流程

如上图，在启动⼀个 API 命令后，API 命令会⾸先加载配置⽂件，根
据配置做后⾯的处理⼯作。通常会将⽇志相关的配置记录在配置⽂件
中，在解析完配置⽂件后，就可以加载⽇志包初始化函数，来初始化
⽇志实例，供后⾯的程序调⽤。接下来会初始化数据库实例，建⽴数
据库连接，供后⾯对数据库的 CRUD 操作使⽤。在建⽴完数据库连
接后，需要设置 HTTP，通常包括 3 ⽅⾯的设置：

1. 设置 Header
2. 注册路由
3. 注册中间件

之后会调⽤ net/http 包的 ListenAndServe() ⽅法启动 HTTP
服务器。

在启动 HTTP 端⼝之前，程序会 go ⼀个协程，来ping HTTP 服务
器的 /sd/health 接⼝，如果程序成功启动，ping 协程在
timeout 之前会成功返回，如果程序启动失败，则 ping 协程最终会
timeout，并终⽌整个程序。

解析配置⽂件、初始化 Log 、初始化数据库的顺序根据
⾃⼰的喜好和需求来排即可。

HTTP 请求处理流程

⼀次完整的 HTTP 请求处理流程如上图所示。（图⽚出⾃《HTTP 权
威指南》 (https://book.douban.com/subject/10746113/)，推
荐想全⾯理解 HTTP 的读者阅读此书。）

1. 建⽴连接

客户端发送 HTTP 请求后，服务器会根据域名进⾏域名解析，就是
将⽹站名称转变成 IP 地址：localhost -> 127.0.0.1，Linux
hosts⽂件、DNS 域名解析等可以实现这种功能。之后通过发起
TCP 的三次握⼿建⽴连接。TCP 三次连接请参考 TCP 三次握⼿详解
及释放连接过程
(https://blog.csdn.net/oney139/article/details/8103223)，建
⽴连接之后就可以发送 HTTP 请求了。

2. 接收请求

HTTP 服务器软件进程，这⾥指的是 API 服务器，在接收到请求之
后，⾸先根据 HTTP 请求⾏的信息来解析到 HTTP ⽅法和路径，在
上图所示的报⽂中，⽅法是 GET，路径是 /index.html，之后根据

https://book.douban.com/subject/10746113/
https://blog.csdn.net/oney139/article/details/8103223

API 服务器注册的路由信息（⼤概可以理解为：HTTP ⽅法 + 路径
和具体处理函数的映射）找到具体的处理函数。

3. 处理请求

在接收到请求之后，API 通常会解析 HTTP 请求报⽂获取请求头和消
息体，然后根据这些信息进⾏相应的业务处理，HTTP 框架⼀般都有
⾃带的解析函数，只需要输⼊ HTTP 请求报⽂，就可以解析到需要
的请求头和消息体。通常情况下，业务逻辑处理可以分为两种：包含
对数据库的操作和不包含对数据的操作。⼤型系统中通常两种都会
有：

1. 包含对数据库的操作：需要访问数据库（增删改查），然后获
取指定的数据，对数据处理后构建指定的响应结构体，返回响
应包。数据库通常⽤的是 MySQL，因为免费，功能和性能也都
能满⾜企业级应⽤的要求。

2. 不包含对数据库的操作：进⾏业务逻辑处理后，构建指定的响
应结构体，返回响应包。

4. 记录事务处理过程

在业务逻辑处理过程中，需要记录⼀些关键信息，⽅便后期 Debug
⽤。在 Go 中有各种各样的⽇志包可以⽤来记录这些信息。

HTTP 请求和响应格式介绍

⼀个 HTTP 请求报⽂由请求⾏（request line）、请求头部
（header）、空⾏和请求数据四部分组成，下图是请求报⽂的⼀般
格式。

第⼀⾏必须是⼀个请求⾏（request line），⽤来说明请求类
型、要访问的资源以及所使⽤的 HTTP 版本
紧接着是⼀个头部（header）⼩节，⽤来说明服务器要使⽤的
附加信息
之后是⼀个空⾏
再后⾯可以添加任意的其他数据（称之为主体：body）

HTTP 响应格式跟请求格式类似，也是由 4 个部分组
成：状态⾏、消息报头、空⾏和响应数据。

⽬录结构

├── admin.sh # 进程的
start|stop|status|restart控制⽂件
├── conf # 配置⽂件统⼀存放
⽬录
│ ├── config.yaml # 配置⽂件
│ ├── server.crt # TLS配置⽂件

│ └── server.key
├── config # 专⻔⽤来处理配置
和配置⽂件的Go package
│ └── config.go
├── db.sql # 在部署新环境时，
可以登录MySQL客户端，执⾏source db.sql创建数据库和表
├── docs # swagger⽂档，执
⾏ swag init ⽣成的
│ ├── docs.go
│ └── swagger
│ ├── swagger.json
│ └── swagger.yaml
├── handler # 类似MVC架构中的
C，⽤来读取输⼊，并将处理流程转发给实际的处理函数，最后返回
结果
│ ├── handler.go
│ ├── sd # 健康检查handler
│ │ └── check.go
│ └── user # 核⼼：⽤户业务逻
辑handler
│ ├── create.go # 新增⽤户
│ ├── delete.go # 删除⽤户
│ ├── get.go # 获取指定的⽤户信
息
│ ├── list.go # 查询⽤户列表
│ ├── login.go # ⽤户登录
│ ├── update.go # 更新⽤户
│ └── user.go # 存放⽤户handler
公⽤的函数、结构体等
├── main.go # Go程序唯⼀⼊⼝
├── Makefile # Makefile⽂件，⼀
般⼤型软件系统都是采⽤make来作为编译⼯具
├── model # 数据库相关的操作

统⼀放在这⾥，包括数据库初始化和对表的增删改查
│ ├── init.go # 初始化和连接数据
库
│ ├── model.go # 存放⼀些公⽤的go
struct
│ └── user.go # ⽤户相关的数据库
CURD操作
├── pkg # 引⽤的包
│ ├── auth # 认证包
│ │ └── auth.go
│ ├── constvar # 常量统⼀存放位置
│ │ └── constvar.go
│ ├── errno # 错误码存放位置
│ │ ├── code.go
│ │ └── errno.go
│ ├── token
│ │ └── token.go
│ └── version # 版本包
│ ├── base.go
│ ├── doc.go
│ └── version.go
├── README.md # API⽬录README
├── router # 路由相关处理
│ ├── middleware # API服务器⽤的是
Gin Web框架，Gin中间件存放位置
│ │ ├── auth.go
│ │ ├── header.go
│ │ ├── logging.go
│ │ └── requestid.go
│ └── router.go
├── service # 实际业务处理函数
存放位置
│ └── service.go

├── util # ⼯具类函数存放⽬
录
│ ├── util.go
│ └── util_test.go
└── vendor # vendor⽬录⽤来
管理依赖包
 ├── github.com
 ├── golang.org
 ├── gopkg.in
 └── vendor.json

Go API 项⽬中，⼀般都会包括这些功能项：Makefile ⽂件、配置⽂
件⽬录、RESTful API 服务器的 handler ⽬录、model ⽬录、⼯具
类⽬录、vendor ⽬录，以及实际处理业务逻辑函数所存放的
service ⽬录。这些都在上述的代码结构中有列出，新加功能时将代
码放⼊对应功能的⽬录/⽂件中，可以使整个项⽬代码结构更加清
晰，⾮常有利于后期的查找和维护。

⼩结

本⼩节通过介绍 API 服务器启动流程和 HTTP 请求处理流程，来让
读者对 API 服务器中的关键流程有个宏观的了解，更好地理解 API
服务器是如何⼯作的。API 服务器源码结构也⾮常重要，⼀个好的源
码结构通常能让逻辑更加清晰，编写更加顺畅，后期维护更加容易，
本⼩册介绍了笔者倾向的源码组织结构，供读者参考。

