
启动⼀个最简单的 RESTful API
服务器

本节核⼼内容

启动⼀个最简单的 RESTful API 服务器
设置 HTTP Header
API 服务器健康检查和状态查询
编译并测试 API

本⼩节源码下载路径：demo01
(https://github.com/lexkong/apiserver_demos/tree/master/demo01)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

如⽆特别说明，本⼩册的操作和编译⽬录均是 API 源码的根⽬
录，并且本 API 服务器名字（也是⼆进制命令的名字）⼩册中统
⼀叫作 apiserver。

REST Web 框架选择

要编写⼀个 RESTful ⻛格的 API 服务器，⾸先需要⼀个 RESTful
Web 框架，笔者经过调研选择了 GitHub star 数最多的 Gin
(https://github.com/gin-gonic/gin)。采⽤轻量级的 Gin 框架，
具有如下优点：⾼性能、扩展性强、稳定性强、相对⽽⾔⽐较简洁
（查看 性能对⽐ (https://github.com/gin-

https://github.com/lexkong/apiserver_demos/tree/master/demo01
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin/blob/master/BENCHMARKS.md

gonic/gin/blob/master/BENCHMARKS.md)）。关于 Gin 的更多
介绍可以参考 Golang 微框架 Gin 简介
(https://www.jianshu.com/p/a31e4ee25305)。

加载路由，并启动 HTTP 服务

main.go 中的 main() 函数是 Go 程序的⼊⼝函数，在 main() 函
数中主要做⼀些配置⽂件解析、程序初始化和路由加载之类的事情，
最终调⽤ http.ListenAndServe() 在指定端⼝启动⼀个 HTTP
服务器。本⼩节是⼀个简单的 HTTP 服务器，仅初始化⼀个 Gin 实
例，加载路由并启动 HTTP 服务器。

编写⼊⼝函数

编写 main() 函数，main.go 代码：

https://github.com/gin-gonic/gin/blob/master/BENCHMARKS.md
https://www.jianshu.com/p/a31e4ee25305

package main

import (
 "log"
 "net/http"

 "apiserver/router"

 "github.com/gin-gonic/gin"
)

func main() {
 // Create the Gin engine.
 g := gin.New()

 // gin middlewares
 middlewares := []gin.HandlerFunc{}

 // Routes.
 router.Load(
 // Cores.
 g,

 // Middlewares.
 middlewares...,
)

 log.Printf("Start to listening the incoming
requests on http address: %s", ":8080")
 log.Printf(http.ListenAndServe(":8080",
g).Error())
}

加载路由

main() 函数通过调⽤ router.Load 函数来加载路由（函数路径
为 router/router.go，具体函数实现参照
demo01/router/router.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo01/router/router.go)

 "apiserver/handler/sd"

 // The health check handlers
 svcd := g.Group("/sd")
 {
 svcd.GET("/health", sd.HealthCheck)
 svcd.GET("/disk", sd.DiskCheck)
 svcd.GET("/cpu", sd.CPUCheck)
 svcd.GET("/ram", sd.RAMCheck)
 }

该代码块定义了⼀个叫 sd 的分组，在该分组下注册了
/health、/disk、/cpu、/ram HTTP 路径，分别路由到
sd.HealthCheck、sd.DiskCheck、sd.CPUCheck、sd.RAMCheck
函数。sd 分组主要⽤来检查 API Server 的状态：健康状况、服务器
硬盘、CPU 和内存使⽤量。具体函数实现参照
demo01/handler/sd/check.go
(https://github.com/lexkong/apiserver_demos/blob/master/demo01/handler/sd/check.go)

设置 HTTP Header

router.Load 函数通过 g.Use() 来为每⼀个请求设置 Header，
在 router/router.go ⽂件中设置 Header：

https://github.com/lexkong/apiserver_demos/blob/master/demo01/router/router.go
https://github.com/lexkong/apiserver_demos/blob/master/demo01/handler/sd/check.go

 g.Use(gin.Recovery())
 g.Use(middleware.NoCache)
 g.Use(middleware.Options)
 g.Use(middleware.Secure)

gin.Recovery()：在处理某些请求时可能因为程序 bug 或
者其他异常情况导致程序 panic，这时候为了不影响下⼀次请
求的调⽤，需要通过 gin.Recovery()来恢复 API 服务器
middleware.NoCache：强制浏览器不使⽤缓存
middleware.Options：浏览器跨域 OPTIONS 请求设置
middleware.Secure：⼀些安全设置

middleware包的实现⻅
demo01/router/middleware
(https://github.com/lexkong/apiserver_demos/tree/master/demo01/router/middleware)

API 服务器健康状态⾃检

有时候 API 进程起来不代表 API 服务器正常，笔者曾经就遇到过这
种问题：API 进程存在，但是服务器却不能对外提供服务。因此在启
动 API 服务器时，如果能够最后做⼀个⾃检会更好些。笔者在
apiserver 中也添加了⾃检程序，在启动 HTTP 端⼝前 go ⼀个
pingServer 协程，启动 HTTP 端⼝后，该协程不断地 ping
/sd/health 路径，如果失败次数超过⼀定次数，则终⽌ HTTP 服
务器进程。通过⾃检可以最⼤程度地保证启动后的 API 服务器处于
健康状态。⾃检部分代码位于 main.go 中：

func main() {

 // Ping the server to make sure the router is

https://github.com/lexkong/apiserver_demos/tree/master/demo01/router/middleware

working.
 go func() {
 if err := pingServer(); err != nil {
 log.Fatal("The router has no
response, or it might took too long to start
up.", err)
 }
 log.Print("The router has been deployed
successfully.")
 }()

}

// pingServer pings the http server to make sure
the router is working.
func pingServer() error {
 for i := 0; i < 10; i++ {
 // Ping the server by sending a GET
request to `/health`.
 resp, err :=
http.Get("http://127.0.0.1:8080" + "/sd/health")
 if err == nil && resp.StatusCode == 200 {
 return nil
 }

 // Sleep for a second to continue the
next ping.
 log.Print("Waiting for the router, retry
in 1 second.")
 time.Sleep(time.Second)
 }
 return errors.New("Cannot connect to the
router.")

}

在 pingServer() 函数中，http.Get 向
http://127.0.0.1:8080/sd/health 发送 HTTP GET 请求，
如果函数正确执⾏并且返回的 HTTP StatusCode 为 200，则说明
API 服务器可⽤，pingServer 函数输出部署成功提示；如果超过
指定次数，pingServer 直接终⽌ API Server 进程，如下图所示。

/sd/health 路径会匹配到 handler/sd/check.go
中的 HealthCheck 函数，该函数只返回⼀个字符串：
OK。

编译源码

1. 下载 apiserver_demos 源码包

$ git clone
https://github.com/lexkong/apiserver_demos

2. 将 apiserver_demos/demo01 复制为
$GOPATH/src/apiserver

$ cp -a apiserver_demos/demo01/
$GOPATH/src/apiserver

3. ⾸次编译需要下载 vendor 包

因为 apiserver 功能⽐较丰富，需要⽤到很多 Go package，统计了
下需要⽤到 60 个⾮标准 Go 包。为了让读者更容易地上⼿编写代
码，这⾥将这些依赖⽤ go vendor 进⾏管理，并放在 GitHub 上供
读者下载安装，安装⽅法为：

$ cd $GOPATH/src
$ git clone https://github.com/lexkong/vendor

4. 进⼊ apiserver ⽬录编译源代码

$ cd $GOPATH/src/apiserver
$ gofmt -w .
$ go tool vet .
$ go build -v .

编译后的⼆进制⽂件存放在当前⽬录，名字跟⽬录名相
同：apiserver。

笔者建议每次编译前对 Go 源码进⾏格式化和代码静态
检查，以发现潜在的 Bug 或可疑的构造。

cURL ⼯具测试 API

cURL ⼯具简介

本⼩册采⽤ cURL ⼯具来测试 RESTful API，标准的 Linux 发⾏版
都安装了 cURL ⼯具。cURL 可以很⽅便地完成对 REST API 的调⽤
场景，⽐如：设置 Header，指定 HTTP 请求⽅法，指定 HTTP 消
息体，指定权限认证信息等。通过 -v 选项也能输出 REST 请求的所
有返回信息。cURL 功能很强⼤，有很多参数，这⾥列出 REST 测试
常⽤的参数：

-X/--request [GET|POST|PUT|DELETE|…] 指定请求的
HTTP ⽅法
-H/--header 指定请求的
HTTP Header
-d/--data 指定请求的
HTTP 消息体（Body）
-v/--verbose 输出详细的返回
信息
-u/--user 指定账号、密码
-b/--cookie 读取 cookie

典型的测试命令为：

$ curl -v -XPOST -H "Content-Type:
application/json" http://127.0.0.1:8080/user -
d'{"username":"admin","password":"admin1234"}'

启动 API Server

$./apiserver
[GIN-debug] [WARNING] Running in "debug" mode.
Switch to "release" mode in production.
 - using env: export GIN_MODE=release
 - using code: gin.SetMode(gin.ReleaseMode)

[GIN-debug] GET /sd/health -->
apiserver/handler/sd.HealthCheck (5 handlers)
[GIN-debug] GET /sd/disk -->
apiserver/handler/sd.DiskCheck (5 handlers)
[GIN-debug] GET /sd/cpu -->
apiserver/handler/sd.CPUCheck (5 handlers)
[GIN-debug] GET /sd/ram -->
apiserver/handler/sd.RAMCheck (5 handlers)
Start to listening the incoming requests on http
address: :8080
The router has been deployed successfully.

发送 HTTP GET 请求

$ curl -XGET http://127.0.0.1:8080/sd/health
OK

$ curl -XGET http://127.0.0.1:8080/sd/disk
OK - Free space: 16321MB (15GB) / 51200MB (50GB)
| Used: 31%

$ curl -XGET http://127.0.0.1:8080/sd/cpu
CRITICAL - Load average: 2.39, 2.13, 1.97 |
Cores: 2

$ curl -XGET http://127.0.0.1:8080/sd/ram
OK - Free space: 455MB (0GB) / 8192MB (8GB) |
Used: 5%

可以看到 HTTP 服务器均能正确响应请求。

⼩结

本⼩节通过具体的例⼦教读者快速启动⼀个 API 服务器，这只是⼀
个稍微复杂点的 "Hello World"。读者可以先通过该 Hello World 熟
悉 Go API 开发流程，后续⼩节会基于这个简单的 API 服务器，⼀步
步构建⼀个企业级的 API 服务器。

