
配置⽂件读取

本节核⼼内容

介绍 apiserver 所采⽤的配置解决⽅案
介绍如何配置 apiserver 并读取其配置，以及配置的⾼级⽤法

本⼩节源码下载路径：demo02
(https://github.com/lexkong/apiserver_demos/tree/master/demo02)

可先下载源码到本地，结合源码理解后续内容，边学边
练。

本⼩节的代码是基于 demo01
(https://github.com/lexkong/apiserver_demos/tree/master/demo01)
来开发的。

Viper 简介

Viper (https://github.com/spf13/viper) 是国外⼤神 spf13 编写
的开源配置解决⽅案，具有如下特性:

设置默认值
可以读取如下格式的配置⽂件：JSON、TOML、YAML、HCL
监控配置⽂件改动，并热加载配置⽂件
从环境变量读取配置
从远程配置中⼼读取配置（etcd/consul），并监控变动
从命令⾏ flag 读取配置
从缓存中读取配置

https://github.com/lexkong/apiserver_demos/tree/master/demo02
https://github.com/lexkong/apiserver_demos/tree/master/demo01
https://github.com/spf13/viper

⽀持直接设置配置项的值

Viper 配置读取顺序：

viper.Set() 所设置的值
命令⾏ flag
环境变量
配置⽂件
配置中⼼：etcd/consul
默认值

从上⾯这些特性来看，Viper 毫⽆疑问是⾮常强⼤的，⽽且 Viper ⽤
起来也很⽅便，在初始化配置⽂件后，读取配置只需要调⽤
viper.GetString()、viper.GetInt() 和
viper.GetBool() 等函数即可。

Viper 也可以⾮常⽅便地读取多个层级的配置，⽐如这样⼀个 YAML
格式的配置：

common:
 database:
 name: test
 host: 127.0.0.1

如果要读取 host 配置，执⾏
viper.GetString("common.database.host") 即可。

apiserver 采⽤ YAML 格式的配置⽂件，采⽤ YAML 格式，是因为
YAML 表达的格式更丰富，可读性更强。

初始化配置

主函数中增加配置初始化⼊⼝

package main

import (
 "errors"
 "log"
 "net/http"
 "time"

 "apiserver/config"

 ...

 "github.com/spf13/pflag"
)

var (
 cfg = pflag.StringP("config", "c", "",
"apiserver config file path.")
)

func main() {
 pflag.Parse()

 // init config
 if err := config.Init(*cfg); err != nil {
 panic(err)
 }

 // Create the Gin engine.
 g := gin.New()

 ...
}

在 main 函数中增加了 config.Init(*cfg) 调⽤，⽤来初始化配
置，cfg 变量值从命令⾏ flag 传⼊，可以传值，⽐如
./apiserver -c config.yaml，也可以为空，如果为空会默认
读取 conf/config.yaml。

解析配置

main 函数通过 config.Init 函数来解析并 watch 配置⽂件（函
数路径：config/config.go），config.go 源码为：

package config

import (
 "log"
 "strings"

 "github.com/fsnotify/fsnotify"
 "github.com/spf13/viper"
)

type Config struct {
 Name string
}

func Init(cfg string) error {
 c := Config {
 Name: cfg,
 }

 // 初始化配置⽂件
 if err := c.initConfig(); err != nil {
 return err

 }

 // 监控配置⽂件变化并热加载程序
 c.watchConfig()

 return nil
}

func (c *Config) initConfig() error {
 if c.Name != "" {
 viper.SetConfigFile(c.Name) // 如果指定了配
置⽂件，则解析指定的配置⽂件
 } else {
 viper.AddConfigPath("conf") // 如果没有指定
配置⽂件，则解析默认的配置⽂件
 viper.SetConfigName("config")
 }
 viper.SetConfigType("yaml") // 设置配置⽂件格式
为YAML
 viper.AutomaticEnv() // 读取匹配的环境变量
 viper.SetEnvPrefix("APISERVER") // 读取环境变量
的前缀为APISERVER
 replacer := strings.NewReplacer(".", "_")
 viper.SetEnvKeyReplacer(replacer)
 if err := viper.ReadInConfig(); err != nil {
// viper解析配置⽂件
 return err
 }

 return nil
}

// 监控配置⽂件变化并热加载程序

func (c *Config) watchConfig() {
 viper.WatchConfig()
 viper.OnConfigChange(func(e fsnotify.Event) {
 log.Printf("Config file changed: %s",
e.Name)
 })
}

config.Init() 通过 initConfig() 函数来解析配置⽂件，通过
watchConfig() 函数来 watch 配置⽂件，两个函数解析如下：

1. func (c *Config) initConfig() error

设置并解析配置⽂件。如果指定了配置⽂件 *cfg 不为空，则
解析指定的配置⽂件，否则解析默认的配置⽂件
conf/config.yaml。通过指定配置⽂件可以很⽅便地连接
不同的环境（开发环境、测试环境）并加载不同的配置，⽅便
开发和测试。

通过如下设置

viper.AutomaticEnv()
viper.SetEnvPrefix("APISERVER")
replacer := strings.NewReplacer(".", "_")

可以使程序读取环境变量，具体效果稍后会演示。

config.Init 函数中的 viper.ReadInConfig() 函数最终
会调⽤ Viper 解析配置⽂件。

2. func (c *Config) watchConfig()

通过该函数的 viper 设置，可以使 viper 监控配置⽂件变更，
如有变更则热更新程序。所谓热更新是指：可以不重启 API 进
程，使 API 加载最新配置项的值。

配置并读取配置

API 服务器端⼝号可能经常需要变更，API 服务器启动时间可能会变
⻓，⾃检程序超时时间需要是可配的（通过设置次数），另外 API
需要根据不同的开发模式（开发、⽣产、测试）来匹配不同的⾏为。
开发模式也需要是可配置的，这些都可以在配置⽂件中配置，新建配
置⽂件 conf/config.yaml（默认配置⽂件名字固定为
config.yaml），config.yaml 的内容为：

runmode: debug # 开发模式, debug,
release, test
addr: :6663 # HTTP绑定端⼝
name: apiserver # API Server的名字
url: http://127.0.0.1:6663 # pingServer函数请求的
API服务器的ip:port
max_ping_count: 10 # pingServer函数尝试的
次数

在 main 函数中将相应的配置改成从配置⽂件读取，需要替换的配置
⻅下图中红框部分。

替换后，代码为：

另外根据配置⽂件的 runmode 调⽤ gin.SetMode 来设置 gin 的
运⾏模式：

func main() {
 pflag.Parse()

 // init config
 if err := config.Init(*cfg); err != nil {
 panic(err)
 }

 // Set gin mode.
 gin.SetMode(viper.GetString("runmode"))

}

gin 有 3 种运⾏模式：debug、release 和 test，其中 debug 模式
会打印很多 debug 信息。

编译并运⾏

1. 下载 apiserver_demos 源码包（如前⾯已经下载过，请忽略
此步骤）

$ git clone
https://github.com/lexkong/apiserver_demos

2. 将 apiserver_demos/demo02 复制为
$GOPATH/src/apiserver

$ cp -a apiserver_demos/demo02/
$GOPATH/src/apiserver

3. 在 apiserver ⽬录下编译源码

$ cd $GOPATH/src/apiserver
$ gofmt -w .
$ go tool vet .
$ go build -v .

4. 修改 conf/config.yaml 将端⼝修改为 8888，并启动
apiserver

修改后配置⽂件为：

runmode: debug # 开发模式, debug,
release, test
addr: :8888 # HTTP绑定端⼝
name: apiserver # API Server的名字
url: http://127.0.0.1:8888 # pingServer函数请求的
API服务器的ip:port
max_ping_count: 10 # pingServer函数try的
次数

修改后启动 apiserver：

可以看到，启动 apiserver 后端⼝为配置⽂件中指定的端⼝。

Viper ⾼级⽤法

从环境变量读取配置

在本节第⼀部分介绍过，Viper 可以从环境变量读取配置，这是个⾮
常有⽤的功能。现在越来越多的程序是运⾏在 Kubernetes 容器集
群中的，在 API 服务器迁移到容器集群时，可以直接通过
Kubernetes 来设置环境变量，然后程序读取设置的环境变量来配置
API 服务器。读者不需要了解如何通过 Kubernetes 设置环境变量，
只需要知道 Viper 可以直接读取环境变量即可。

例如，通过环境变量来设置 API Server 端⼝：

$ export APISERVER_ADDR=:7777
$ export APISERVER_URL=http://127.0.0.1:7777
$./apiserver
[GIN-debug] [WARNING] Running in "debug" mode.
Switch to "release" mode in production.
 - using env: export GIN_MODE=release
 - using code: gin.SetMode(gin.ReleaseMode)

[GIN-debug] GET /sd/health -->
apiserver/handler/sd.HealthCheck (5 handlers)
[GIN-debug] GET /sd/disk -->
apiserver/handler/sd.DiskCheck (5 handlers)
[GIN-debug] GET /sd/cpu -->
apiserver/handler/sd.CPUCheck (5 handlers)
[GIN-debug] GET /sd/ram -->
apiserver/handler/sd.RAMCheck (5 handlers)
Start to listening the incoming requests on http
address: :7777
The router has been deployed successfully.

从输出可以看到，设置 APISERVER_ADDR=:7777 和
APISERVER_URL=http://127.0.0.1:7777 后，启动
apiserver，API 服务器的端⼝变为 7777。

环境变量名格式为 config/config.go ⽂件中
viper.SetEnvPrefix("APISERVER") 所设置的前缀和配置名称
⼤写，⼆者⽤ _ 连接，⽐如 APISERVER_RUNMODE。如果配置项是
嵌套的，情况可类推，⽐如

....
max_ping_count: 10 # pingServer函数try的
次数
db:
 name: db_apiserver

对应的环境变量名为 APISERVER_DB_NAME。

热更新

在 main 函数中添加如下测试代码（for {} 部分，循环打印
runmode 的值）：

import (
 "fmt"

)

var (
 cfg = pflag.StringP("config", "c", "",
"apiserver config file path.")
)

func main() {
 pflag.Parse()

 // init config
 if err := config.Init(*cfg); err != nil {
 panic(err)
 }

 for {
 fmt.Println(viper.GetString("runmode"))
 time.Sleep(4*time.Second)
 }

}

编译并启动 apiserver 后，修改配置⽂件中 runmode 为 test，
可以看到 runmode 的值从 debug 变为 test：

⼩结

本⼩节展示了如何⽤强⼤的配置管理⼯具 Viper 来解析配置⽂件并
读取配置，还演示了 Viper 的⾼级⽤法。

