
第⼀次数据请求，服务器接收⽤户
注册信息

本⼩节将是我们编写服务器端代码的开始。现在假设有这样⼀个
App（⻅下图），⽤户需要通过该界⾯提交注册信息。服务器端在接
收到客户端的注册请求后，返回注册成功信息，并将该⽤户写⼊数据
库表⽤户信息中。

客户端模拟

考虑到本⼩册讲解的是服务器端，这⾥不作 App 端的介绍，我们将
使⽤ HTTP 发包⼯具来模拟上⾯的 App 注册信息的提交。

HTTP 发包⼯具：Getman (https://getman.cn/)

约定服务器端 HTTP server 的端⼝号为 8000，服务器端和客户端
定义的请求是 /users/regist，那么完整的 URL 为
http://150.109.33.132:8000/users/regist?（请⽤⾃⼰的
云虚拟机 IP 替换其中的 IP）。
参数为⼿机号（phone）、密码（password）及验证码
（code），参数放⼊ HTTP 的 body 中，具体为：
{"phone":"18866668888","password":"demo123456","code":"123456"}

注：

1. 确保服务器端 8000 端⼝已放通；
2. 在实际的项⽬中，密码不会明⽂的传输，⼀般会在客户端先使
⽤ md5 进⾏加密，服务器端存储的也是加密后的密码字符
串。本⼩册作为学习示例，将使⽤明⽂讲解。

发包器模拟如下：

https://getman.cn/

客户端的请求⾄此已初步完成，现在，服务器端接收到客户端这个请
求后，将如何处理呢？

服务器端处理

调⽤逻辑

客户端以 POST 的⽅式，发送注册请求⾄服务器端，请求进⼊服务
器端的 main.py 后，将调⽤ url_router 转发到 users_url.py
中，在 users_urls.py 中，对应的 URL 将调⽤
users_views.py 的 RegistHandle 类， RegistHandle 为真
正的代码处理逻辑，在校验⽤户信息正确的情况下，返回 JSON 格式
的注册成功信息给客户端。

编写服务器端⼊⼝函数

main.py 是 Tornado 作为 HTTP 服务器的统⼀⼊⼝，根据前⾯的
约定，Tornado 对外服务的端⼝号为 8000。

#! /usr/bin/python3
-*- coding:utf-8 -*-
Author: demo
Email: demo@demo.com
Version: demo

import tornado.ioloop
import tornado.web
import os
import sys
from tornado.options import define,options

class Application(tornado.web.Application):
 def __init__(self):
 #定义 Tornado 服务器的配置项，如
static/templates ⽬录位置、debug 级别等
 settings = dict(
 debug=True,

static_path=os.path.join(os.path.dirname(__file__
),"static"),

template_path=os.path.join(os.path.dirname(__file
__), "templates")
)
 tornado.web.Application.__init__(self,
**settings)

if __name__ == '__main__':
 print ("Tornado server is ready for
service\r")
 tornado.options.parse_command_line()
 Application().listen(8000, xheaders=True)
 tornado.ioloop.IOLoop.instance().start()

保存 main.py 代码后，在服务器端运⾏此段代码

此时再次点击 HTTP 发包模拟器发送注册信息
URL: http://150.109.33.132:8000/users/regist?
⼊
参：{"phone":"18866668888","password":"demo123456","code":"123456"}

再次查看服务器端

此条打印说明，客户端的 HTTP 请求已到达服务器，服务器接收成
功但处理失败了，原因为找不到路径 /users/regist。下⾯在服
务器端编写针对 /users/regist 的处理代码。

编写路由转发

⾸先，服务器端从 main.py 收到客户端的请求后，需要将其转发给
对应的处理模块。进⼊ common ⽬录，创建 url_router.py ⽂
件

在 url_router.py 中输⼊如下代码。

#!/usr/bin/python3
-*- coding:utf-8 -*-

from __future__ import unicode_literals
from importlib import import_module

def include(module):
 '''根据传⼊的字符串，调⽤相应的模块,如 module 为字符
串 regist 时，
 调⽤views.users.users_views.RegistHandle 模块
 '''
 res = import_module(module)
 urls = getattr(res, 'urls', res)
 return urls

def url_wrapper(urls):
 '''拼接请求 url，调⽤对应的模块，如拼接 users 和
regist 成 url /users/regist，
 调⽤ views.users.users_views.RegistHandle 模块
 '''
 wrapper_list = []

 for url in urls:
 path, handles = url
 if isinstance(handles, (tuple, list)):
 for handle in handles:
 #分离获取字符串（如regist）和调⽤类（如
views.users.users_views.RegistHandle）
 pattern, handle_class = handle
 #拼接url，新的url调⽤模块
 wrap = ('{0}{1}'.format(path,
pattern), handle_class)
 wrapper_list.append(wrap)
 else:
 wrapper_list.append((path, handles))
 return wrapper_list

接下来修改 main.py，调⽤ url_router.py 将⽤户请求的路径转
发给对应的请求模块。

增加如下⼏⾏，从 common ⽬录的 url_router 导⼊所需函数（
from common.url_router import include,
url_wrapper），并在 Application 的类中，拼接转发路由。

完成后的代码如下：

#! /usr/bin/python3
-*- coding:utf-8 -*-
Author: demo
Email: demo@demo.com
Version: demo

import tornado.ioloop
import tornado.web
import os

import sys
from tornado.options import define,options
from common.url_router import include,
url_wrapper
from tornado.options import define,options

class Application(tornado.web.Application):
 def __init__(self):
 handlers = url_wrapper([
 (r"/users/",
include('views.users.users_urls'))
])
 #定义 Tornado 服务器的配置项，如
static/templates ⽬录位置，debug 级别等
 settings = dict(
 debug=True,

static_path=os.path.join(os.path.dirname(__file__
),"static"),

template_path=os.path.join(os.path.dirname(__file
__), "templates")
)
 tornado.web.Application.__init__(self,
handlers, **settings)

if __name__ == '__main__':
 print ("Tornado server is ready for
service\r")
 tornado.options.parse_command_line()
 Application().listen(8000, xheaders=True)

 tornado.ioloop.IOLoop.instance().start()

⾄此，main.py 的路由转发已完成，接下来将编写真正的处理模
块。

进⼊ views ⽬录，创建 users ⽬录，该⽬录将存放所有跟⽤户信息
处理相关的代码。在该⽬录下，创建
users_urls.py、users_views.py。

其中，users_urls.py 处理针对 users 相关的路由及调⽤类之间
的路由，users_views.py 为真正的逻辑处理。在
users_urls.py 中输⼊如下代码：

#! /usr/bin/python3
-*- coding:utf-8 -*-

from __future__ import unicode_literals
from .users_views import (
 RegistHandle
)

urls = [
 #从 /users/regist 过来的请求，将调⽤ users_views
⾥⾯的 RegistHandle 类
 (r'regist', RegistHandle)
]

在 users_views.py ⽂件中，输⼊如下代码：

#! /usr/bin/python3
-*- coding:utf-8 -*-

import tornado.web
from tornado.escape import json_decode

从commons中导⼊http_response⽅法
from common.commons import (
 http_response,
)

从配置⽂件中导⼊错误码
from conf.base import (
 ERROR_CODE,
)

class RegistHandle(tornado.web.RequestHandler):
 """handle /user/regist request
 :param phone: users sign up phone
 :param password: users sign up password
 :param code: users sign up code, must six
digital code
 """

 def post(self):
 try:
 #获取⼊参
 args = json_decode(self.request.body)
 phone = args['phone']
 password = args['password']
 verify_code = args['code']
 except:
 # 获取⼊参失败时，抛出错误码及错误信息
 http_response(self,
ERROR_CODE['1001'], 1001)
 return

 # 处理成功后，返回成功码“0”及成功信息“ok”
 http_response(self, ERROR_CODE['0'], 0)

在users_views.py 中看到，我们从公共⽅法库（commons）中导
⼊了⽅法，并从配置⽂件中导⼊了错误码定义。接下来编写
commons 及 base 配置⽂件。
进⼊ common ⽬录，并创建 commons.py ⽂件，在 commons.py
中输⼊如下代码：

#! /usr/bin/python3
-*- coding:utf-8 -*-

import json

def http_response(self, msg, code):
 self.write(json.dumps({"data": {"msg": msg,
"code": code}}))

if __name__ == "__main__":
 http_response()

在 conf ⽬录下，创建 base.py ⽂件：

在 base.py ⽂件中，输⼊如下代码：

#! /usr/bin/python3
-*- coding:utf-8 -*-

ERROR_CODE = {
 "0": "ok",
 #Users error code
 "1001": "⼊参⾮法"
}

⾄此，我们已经完成了基本的⽤户注册以及服务器端处理逻辑代码，
重新运⾏ main.py，查看是否启动正常。

现在再从 HTTP 发包模拟器

此时看到返回的 JSON 消息已成功。

再次查看服务器端，此时控制台打印的 log 提示 HTTP 200，表示
该条 URL 请求已正确处理并返回。

假如此时 HTTP 发包模拟器⼊参少了 code 参数，将提示错误信
息。

⾄此，我们第⼀次客户端与服务器端的数据请求及回复已讲解完毕。
完成后的⽬录结构及⽂件如下。

代码下载

到⽬前为⽌，服务器端代码如下：
demo6 (https://github.com/Jawish185/demo6.git)

⼩结

本⼩节讲解了客户端与服务器端的第⼀次数据请求及回复。代码⽐较
简单，重点在于理解其中的 URL 路由转发，以达到触类旁通的效
果。代码还有很多待完善的地⽅，如增加 log 管理，进⼀步抽象类
和⽅法等。下⼀⼩节，我们将为代码加⼊ log 管理。

https://github.com/Jawish185/demo6.git

