
07 | 行锁功过：怎么减少行锁对性能的影响？
2018-11-28 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 11:31 大小 5.28M

在上一篇文章中，我跟你介绍了 MySQL 的全局锁和表级锁，今天我们就来讲讲 MySQL

的行锁。

MySQL 的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁，比如

MyISAM 引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁，对于这种引擎的

表，同一张表上任何时刻只能有一个更新在执行，这就会影响到业务并发度。InnoDB 是支

持行锁的，这也是 MyISAM 被 InnoDB 替代的重要原因之一。

我们今天就主要来聊聊 InnoDB 的行锁，以及如何通过减少锁冲突来提升业务并发度。

顾名思义，行锁就是针对数据表中行记录的锁。这很好理解，比如事务 A 更新了一行，而

这时候事务 B 也要更新同一行，则必须等事务 A 的操作完成后才能进行更新。





 下载APP 

加微信：642945106 发送“赠送”领取赠送精品课程
发数字“2”获取众筹列表

当然，数据库中还有一些没那么一目了然的概念和设计，这些概念如果理解和使用不当，容

易导致程序出现非预期行为，比如两阶段锁。

从两阶段锁说起

我先给你举个例子。在下面的操作序列中，事务 B 的 update 语句执行时会是什么现象

呢？假设字段 id 是表 t 的主键。

这个问题的结论取决于事务 A 在执行完两条 update 语句后，持有哪些锁，以及在什么时

候释放。你可以验证一下：实际上事务 B 的 update 语句会被阻塞，直到事务 A 执行

commit 之后，事务 B 才能继续执行。

知道了这个答案，你一定知道了事务 A 持有的两个记录的行锁，都是在 commit 的时候才

释放的。

也就是说，在 InnoDB 事务中，行锁是在需要的时候才加上的，但并不是不需要了就立刻

释放，而是要等到事务结束时才释放。这个就是两阶段锁协议。

知道了这个设定，对我们使用事务有什么帮助呢？那就是，如果你的事务中需要锁多个行，

要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。我给你举个例子。

假设你负责实现一个电影票在线交易业务，顾客 A 要在影院 B 购买电影票。我们简化一

点，这个业务需要涉及到以下操作：

1. 从顾客 A 账户余额中扣除电影票价；

2. 给影院 B 的账户余额增加这张电影票价；

3. 记录一条交易日志。

也就是说，要完成这个交易，我们需要 update 两条记录，并 insert 一条记录。当然，为

了保证交易的原子性，我们要把这三个操作放在一个事务中。那么，你会怎样安排这三个语

句在事务中的顺序呢？

试想如果同时有另外一个顾客 C 要在影院 B 买票，那么这两个事务冲突的部分就是语句 2

了。因为它们要更新同一个影院账户的余额，需要修改同一行数据。

根据两阶段锁协议，不论你怎样安排语句顺序，所有的操作需要的行锁都是在事务提交的时

候才释放的。所以，如果你把语句 2 安排在最后，比如按照 3、1、2 这样的顺序，那么影

院账户余额这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待，提升了并发

度。

好了，现在由于你的正确设计，影院余额这一行的行锁在一个事务中不会停留很长时间。但

是，这并没有完全解决你的困扰。

如果这个影院做活动，可以低价预售一年内所有的电影票，而且这个活动只做一天。于是在

活动时间开始的时候，你的 MySQL 就挂了。你登上服务器一看，CPU 消耗接近 100%，

但整个数据库每秒就执行不到 100 个事务。这是什么原因呢？

这里，我就要说到死锁和死锁检测了。

死锁和死锁检测

当并发系统中不同线程出现循环资源依赖，涉及的线程都在等待别的线程释放资源时，就会

导致这几个线程都进入无限等待的状态，称为死锁。这里我用数据库中的行锁举个例子。

防止断
更 请务

必加

首发微
信：1

71614
3665

这时候，事务 A 在等待事务 B 释放 id=2 的行锁，而事务 B 在等待事务 A 释放 id=1 的行

锁。 事务 A 和事务 B 在互相等待对方的资源释放，就是进入了死锁状态。当出现死锁以

后，有两种策略：

在 InnoDB 中，innodb_lock_wait_timeout 的默认值是 50s，意味着如果采用第一个策

略，当出现死锁以后，第一个被锁住的线程要过 50s 才会超时退出，然后其他线程才有可

能继续执行。对于在线服务来说，这个等待时间往往是无法接受的。

但是，我们又不可能直接把这个时间设置成一个很小的值，比如 1s。这样当出现死锁的时

候，确实很快就可以解开，但如果不是死锁，而是简单的锁等待呢？所以，超时时间设置太

短的话，会出现很多误伤。

一种策略是，直接进入等待，直到超时。这个超时时间可以通过参数

innodb_lock_wait_timeout 来设置。

另一种策略是，发起死锁检测，发现死锁后，主动回滚死锁链条中的某一个事务，让其他

事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on，表示开启这个逻辑。

所以，正常情况下我们还是要采用第二种策略，即：主动死锁检测，而且

innodb_deadlock_detect 的默认值本身就是 on。主动死锁检测在发生死锁的时候，是能

够快速发现并进行处理的，但是它也是有额外负担的。

你可以想象一下这个过程：每当一个事务被锁的时候，就要看看它所依赖的线程有没有被别

人锁住，如此循环，最后判断是否出现了循环等待，也就是死锁。

那如果是我们上面说到的所有事务都要更新同一行的场景呢？

每个新来的被堵住的线程，都要判断会不会由于自己的加入导致了死锁，这是一个时间复杂

度是 O(n) 的操作。假设有 1000 个并发线程要同时更新同一行，那么死锁检测操作就是

100 万这个量级的。虽然最终检测的结果是没有死锁，但是这期间要消耗大量的 CPU 资

源。因此，你就会看到 CPU 利用率很高，但是每秒却执行不了几个事务。

根据上面的分析，我们来讨论一下，怎么解决由这种热点行更新导致的性能问题呢？问题的

症结在于，死锁检测要耗费大量的 CPU 资源。

一种头痛医头的方法，就是如果你能确保这个业务一定不会出现死锁，可以临时把死锁检测

关掉。但是这种操作本身带有一定的风险，因为业务设计的时候一般不会把死锁当做一个严

重错误，毕竟出现死锁了，就回滚，然后通过业务重试一般就没问题了，这是业务无损的。

而关掉死锁检测意味着可能会出现大量的超时，这是业务有损的。

另一个思路是控制并发度。根据上面的分析，你会发现如果并发能够控制住，比如同一行同

时最多只有 10 个线程在更新，那么死锁检测的成本很低，就不会出现这个问题。一个直接

的想法就是，在客户端做并发控制。但是，你会很快发现这个方法不太可行，因为客户端很

多。我见过一个应用，有 600 个客户端，这样即使每个客户端控制到只有 5 个并发线程，

汇总到数据库服务端以后，峰值并发数也可能要达到 3000。

因此，这个并发控制要做在数据库服务端。如果你有中间件，可以考虑在中间件实现；如果

你的团队有能修改 MySQL 源码的人，也可以做在 MySQL 里面。基本思路就是，对于相

同行的更新，在进入引擎之前排队。这样在 InnoDB 内部就不会有大量的死锁检测工作

了。

可能你会问，如果团队里暂时没有数据库方面的专家，不能实现这样的方案，能不能从设计

上优化这个问题呢？

你可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例，可以考虑放

在多条记录上，比如 10 个记录，影院的账户总额等于这 10 个记录的值的总和。这样每次

要给影院账户加金额的时候，随机选其中一条记录来加。这样每次冲突概率变成原来的

1/10，可以减少锁等待个数，也就减少了死锁检测的 CPU 消耗。

这个方案看上去是无损的，但其实这类方案需要根据业务逻辑做详细设计。如果账户余额可

能会减少，比如退票逻辑，那么这时候就需要考虑当一部分行记录变成 0 的时候，代码要

有特殊处理。

小结

今天，我和你介绍了 MySQL 的行锁，涉及了两阶段锁协议、死锁和死锁检测这两大部分

内容。

其中，我以两阶段协议为起点，和你一起讨论了在开发的时候如何安排正确的事务语句。这

里的原则 / 我给你的建议是：如果你的事务中需要锁多个行，要把最可能造成锁冲突、最

可能影响并发度的锁的申请时机尽量往后放。

但是，调整语句顺序并不能完全避免死锁。所以我们引入了死锁和死锁检测的概念，以及提

供了三个方案，来减少死锁对数据库的影响。减少死锁的主要方向，就是控制访问相同资源

的并发事务量。

最后，我给你留下一个问题吧。如果你要删除一个表里面的前 10000 行数据，有以下三种

方法可以做到：

你会选择哪一种方法呢？为什么呢？

你可以把你的思考和观点写在留言区里，我会在下一篇文章的末尾和你讨论这个问题。感谢

你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

第一种，直接执行 delete from T limit 10000;

第二种，在一个连接中循环执行 20 次 delete from T limit 500;

第三种，在 20 个连接中同时执行 delete from T limit 500。

拼课微
信：1

71614
3665

上期我给你留的问题是：当备库用–single-transaction 做逻辑备份的时候，如果从主库的

binlog 传来一个 DDL 语句会怎么样？

假设这个 DDL 是针对表 t1 的， 这里我把备份过程中几个关键的语句列出来：

在备份开始的时候，为了确保 RR（可重复读）隔离级别，再设置一次 RR 隔离级别 (Q1);

启动事务，这里用 WITH CONSISTENT SNAPSHOT 确保这个语句执行完就可以得到一个

一致性视图（Q2)；

设置一个保存点，这个很重要（Q3）；

show create 是为了拿到表结构 (Q4)，然后正式导数据 （Q5），回滚到 SAVEPOINT

sp，在这里的作用是释放 t1 的 MDL 锁 （Q6）。当然这部分属于“超纲”，上文正文里

面都没提到。

DDL 从主库传过来的时间按照效果不同，我打了四个时刻。题目设定为小表，我们假定到

达后，如果开始执行，则很快能够执行完成。

参考答案如下：

1. 如果在 Q4 语句执行之前到达，现象：没有影响，备份拿到的是 DDL 后的表结构。

1

2

3

4

5

6

7

8

9

10

11

12

Q1:SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;
Q2:START TRANSACTION WITH CONSISTENT SNAPSHOT；
/* other tables */
Q3:SAVEPOINT sp;
/* 时刻 1 */
Q4:show create table `t1`;
/* 时刻 2 */
Q5:SELECT * FROM `t1`;
/* 时刻 3 */
Q6:ROLLBACK TO SAVEPOINT sp;
/* 时刻 4 */
/* other tables */

复制代码

2. 如果在“时刻 2”到达，则表结构被改过，Q5 执行的时候，报 Table definition has

changed, please retry transaction，现象：mysqldump 终止；

3. 如果在“时刻 2”和“时刻 3”之间到达，mysqldump 占着 t1 的 MDL 读锁，binlog

被阻塞，现象：主从延迟，直到 Q6 执行完成。

4. 从“时刻 4”开始，mysqldump 释放了 MDL 读锁，现象：没有影响，备份拿到的是

DDL 前的表结构。

评论区留言点赞板：

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

@Aurora 给了最接近的答案；

@echo＿陈 问了一个好问题；

@壹笙☞漂泊 做了很好的总结。

上一篇 06 | 全局锁和表锁 ：给表加个字段怎么有这么多阻碍？

下一篇 08 | 事务到底是隔离的还是不隔离的？

41

精选留言 (171)  写留言

bluefantas... 置顶2018-11-28 
41

请教老师一个问题：
innodb行级锁是通过锁索引记录实现的。如果update的列没建索引，即使只update一条
记录也会锁定整张表吗？比如update t set t.name='abc' where t.name='cde'; name字
段无索引。为何innodb不优化一下，只锁定name='cde'的列？

展开

作者回复: 第一个问题是好问题，我加到答疑文章中。简单的回答：是的。但是你可以再往前考虑

一下，如果是 你的update 语句后面加个limit 1, 会怎么锁？

Innodb支持行锁，没有支持“列锁” 哈😄

木木北月生 置顶

2018-12-03
 23

老师，关于死锁检测innodb_deadlock_detect我想请教一下，是每条事务执行前都会进行
检测吗？如果是这样，即使简单的更新单个表的语句，当每秒的并发量达到上千的话，岂
不是也会消耗大量资源用于死锁检测吗？

展开

作者回复: 是个好问题

如果他要加锁访问的行上有锁，他才要检测。

这里面我担心你有两个误解，说明下：

1. 一致性读不会加锁，就不需要做死锁检测；

2. 并不是每次死锁检测都都要扫所有事务。比如某个时刻，事务等待状态是这样的：

 B在等A，

 D在等C，

 现在来了一个E，发现E需要等D，那么E就判断跟D、C是否会形成死锁，这个检测不用管B和A

荒漠甘泉 置顶

2018-11-28
 18

老师，本节课讲的不支持行锁的引擎，只能使用表锁，而表锁同一张表在同一时刻只能有
一个更新。但是上节课讲的表级锁中的MDL锁，dml语句会产生MDL读锁，而MDL读锁不
是互斥的，也就是说一张表可以同时有多个dml语句操作。感觉这两种说法有点矛盾，请
老师解惑！

展开

作者回复: 不矛盾，MDL锁和表锁是两个不同的结构。

比如：

你要在myisam 表上更新一行，那么会加MDL读锁和表的写锁；

然后同时另外一个线程要更新这个表上另外一行，也要加MDL读锁和表写锁。

第二个线程的*MDL读锁是能成功加上*的，但是被表写锁堵住了。从语句现象上看，就是第二个

线程要等第一个线程执行完成。

某、人 置顶

2018-11-28
 6

老师，针对我的第一个问题。我就是想问怎么能拿到比较全得死锁信息以及把这些信息保
存到文件里。
第二个问题，如果reset以后，是不是就失去了长连接的意义了呢？相当于再次进行连接。

作者回复: 1. 就是持续监控，发现新的就存起来

2. 不会，reset_connection只是复位状态，恢复到连接和权限验证之后的状态，没有重连

蓝天 置顶

2019-01-09
 5

老师：上一节讲的dml时会产生读MDL锁（表锁），也就是update会持有读MDL。读和读
不互斥。但是对于行锁来说。两个update同时更新一条数据是互斥的。这个是因为多种锁
同时存在时，以粒度最小的锁为准的原因么？

展开

作者回复: 不是“以粒度最小为准”

而是如果有多种锁，必须得“全部不互斥”才能并行，只要有一个互斥，就得等。

好问题

三木禾 置顶

2018-12-14
 5

老师，如果开启事务，然后进行死锁检测，如果发现有其它线程因为这个线程的加入，导
致其它线程的死锁，这个流程能帮着分析一下么

展开

作者回复: 好问题

理论上说，之前没死锁，现在A加进来，出现了死锁，那么死锁的环里面肯定包含A，

因此只要从A出发去扫就好了

武者 置顶

2018-11-29
 3

老师 你好
有以下情况 帮忙分析下会锁表不

update a，b set a.name = b.name where a.uid=b.uid and b.group=1；
update c，b set c.age=b.age where c.uid=b.uid and b.group = 1； …
展开

作者回复: 这个你得同时贴表结构。

还有，会不会锁，不是验证一下就可以吗，两个都用begin + 语句，

两阶段锁协议会帮助你😄

泉
2018-11-28

 41

我选第二种。
第一种，需要锁资源多，事务较大，持有锁时间最长。

第三种，多个事务会对同一行产生锁竞争，消耗cpu资源。
请指正。

展开

Tony Du
2018-11-28

 37

方案一，事务相对较长，则占用锁的时间较长，会导致其他客户端等待资源时间较长。
方案二，串行化执行，将相对长的事务分成多次相对短的事务，则每次事务占用锁的时间
相对较短，其他客户端在等待相应资源的时间也较短。这样的操作，同时也意味着将资源
分片使用（每次执行使用不同片段的资源），可以提高并发性。
方案三，人为自己制造锁竞争，加剧并发量。 …
展开

作者回复: 分析得很好。

嗯嗯索引和锁的内容很多，也是需要慢慢安排😄

突然上概念怕大家看得不开心😓

WL
2018-12-01

 22

继续把该讲内容总结为几个问题, 大家复习的时候可以先尝试回答这些问题检查自己的掌握
程度:
 1.
两阶段锁的概念是什么? 对事务使用有什么帮助?
 2. …
展开

作者回复: 继续手动�

岁月安然
2018-11-29

 19

总结：
两阶段锁：在 InnoDB 事务中，行锁是在需要的时候才加上的，但并不是不需要了就立刻
释放， 而是要等到事务结束时才释放。

建议：如果你的事务中需要锁多个行，要把最可能造成锁冲突、最可能影响并发度的锁尽
量往后放。 …
展开

作者回复: �这个总结

锅子
2018-11-28

 11

老师好，关于上一期的问题我有2疑问：
1.Q2，WITH CONSISTENT SNAPSHOT语句执行完可以确保得到一个一致性视图，为什
么还会备份到Q2时间点之后更改的表结构啊？如果这样那是不是意味着如果有一个数据库
一直有数据在写入的话，备份会一直都无法完成。
2.Q3设置了保存点，之后读到主库的DDL语句，那Q6又回滚到了Q3设置的保存点，那…
展开

某、人
2018-11-28

 10

老师我有几个问题:
1.如何在死锁发生时,就把发生的sql语句抓出来？
2.在使用连接池的情况下,连接会复用.比如一个业务使用连接set sql_select_limit=1,释放掉
以后.其他业务复用该连接时,这个参数也生效.请问怎么避免这种情况,或者怎么禁止业务set
session？ …
展开

作者回复: 1. show engine innodb status 里面有信息，不过不是很全…

2. 5.7的reset_connection接口可以考虑一下

3. 用redis的话，为了避免超卖需要增加了很多机制来保证。修改都在数据库里执行就方便点。前

提是要解决热点问题

4. 我认识几位处理问题和分析问题经验非常丰富的专家，不用懂源码，但是原理还是要很清楚的

肉山
2018-11-28

 8

不考虑数据表的访问并发量，单纯从这个三个方案来对比的话。
第一个方案，一次占用的锁时间较长，可能会导致其他客户端一直在等待资源。

第二个方案，分成多次占用锁，串行执行，不占有锁的间隙其他客户端可以工作，类似于
现在多任务操作系统的时间分片调度，大家分片使用资源，不直接影响使用。
第三个方案，自己制造了锁竞争，加剧并发。 …
展开

bing
2018-11-28

 6

在开发时一般都是按照顺序加锁来避免死锁。比如都是按照先拿t1,再拿t2.

作者回复: 是个好的实践经验�

shawn
2018-11-29

 5

话说留言系统打不出大于小于号是为了防止xss攻击吧，推荐下，能不能用作转义的方式解
决呢，留言里小于now()整个没有之后语句不通了
技术向的服务自己的技术得过关吧(手动滑稽)

Aurora
2018-11-28

 5

针对第一层楼主提到的问题，我记得是，如果update 没有走索引，innodb内部是全表根
据主键索引逐行扫描 逐行加锁，释放锁。

展开

作者回复: 逐行加锁，

事务提交的时候统一释放。— 记得两阶段锁哈

杰之7
2018-12-07

 4

昨天和今天学习了锁相关的知识，对锁有了一定的认识。锁分为全局锁，表锁，行锁三
类。全局锁在有事物支持的情况下，使用Mysqldump的single - transaction的方法进行
备份时的更新。昨天晚上也问了老师一个关于表锁的疑问，通过老师的解答，理解了write
比read的权限高。在今天的学习中，学习了行锁，顾名思义，行锁就是在进行行字段操作

时，其他操作不能同时对行进行操作。根据这一问题，提出了两阶段锁协议，并发的锁…
展开

作者回复: 手动点赞

邓俊
2018-11-28

 4

答题：
这个要看数据库压力，如果数据库非常空闲，我选方案一，这样操作简单。如果数据库中
这张表的压力非常大，我选方案三，极端情况下甚至我会制定方案四，每次只删一条。

老师，我有一个问题： …
展开

作者回复: 嗯，如果是没有边界条件，比如一直加钱，这种可以的。但是如果有“退款”的逻辑，

就不行了。只记日志可能会给扣成负数。

everyok22
2018-12-27

 3

今天重读了一下这个表锁，我有一个问题，希望老师给解答一下：
我现在有一个用户领取奖口的业务，　业务里有奖品表：构造语句如下
CREATE TABLE `prize` (
 `id` int(11) NOT NULL AUTO_INCREMENT COMMENT 'id',
 `name` varchar(20) DEFAULT NULL COMMENT '用户名', …
展开

作者回复: 嗯，你这样写冲突太厉害了，

是不是可以改用id做条件来更新？

其实发奖品不一定要发第一个对吧

