
11 | 怎么给字符串字段加索引？
2018-12-07 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 12:46 大小 11.70M

现在，几乎所有的系统都支持邮箱登录，如何在邮箱这样的字段上建立合理的索引，是我们

今天要讨论的问题。

假设，你现在维护一个支持邮箱登录的系统，用户表是这么定义的：



1

2

3

4

5

mysql> create table SUser(
ID bigint unsigned primary key,
email varchar(64),
...
)engine=innodb;

复制代码



 下载APP 

由于要使用邮箱登录，所以业务代码中一定会出现类似于这样的语句：

从第 4 和第 5 篇讲解索引的文章中，我们可以知道，如果 email 这个字段上没有索引，那

么这个语句就只能做全表扫描。

同时，MySQL 是支持前缀索引的，也就是说，你可以定义字符串的一部分作为索引。默认

地，如果你创建索引的语句不指定前缀长度，那么索引就会包含整个字符串。

比如，这两个在 email 字段上创建索引的语句：

第一个语句创建的 index1 索引里面，包含了每个记录的整个字符串；而第二个语句创建的

index2 索引里面，对于每个记录都是只取前 6 个字节。

那么，这两种不同的定义在数据结构和存储上有什么区别呢？如图 2 和 3 所示，就是这两

个索引的示意图。

1 mysql> select f1, f2 from SUser where email='xxx';

复制代码

1

2

3

mysql> alter table SUser add index index1(email);
或

mysql> alter table SUser add index index2(email(6));

复制代码

图 1 email 索引结构

图 2 email(6) 索引结构

从图中你可以看到，由于 email(6) 这个索引结构中每个邮箱字段都只取前 6 个字节（即：

zhangs），所以占用的空间会更小，这就是使用前缀索引的优势。

但，这同时带来的损失是，可能会增加额外的记录扫描次数。

接下来，我们再看看下面这个语句，在这两个索引定义下分别是怎么执行的。

如果使用的是 index1（即 email 整个字符串的索引结构），执行顺序是这样的：

1 select id,name,email from SUser where email='zhangssxyz@xxx.com';

复制代码

1. 从 index1 索引树找到满足索引值是’zhangssxyz@xxx.com’的这条记录，取得 ID2

的值；

2. 到主键上查到主键值是 ID2 的行，判断 email 的值是正确的，将这行记录加入结果集；

3. 取 index1 索引树上刚刚查到的位置的下一条记录，发现已经不满足

email='zhangssxyz@xxx.com’的条件了，循环结束。

这个过程中，只需要回主键索引取一次数据，所以系统认为只扫描了一行。

如果使用的是 index2（即 email(6) 索引结构），执行顺序是这样的：

1. 从 index2 索引树找到满足索引值是’zhangs’的记录，找到的第一个是 ID1；

2. 到主键上查到主键值是 ID1 的行，判断出 email 的值不是’zhangssxyz@xxx.com’，

这行记录丢弃；

3. 取 index2 上刚刚查到的位置的下一条记录，发现仍然是’zhangs’，取出 ID2，再到

ID 索引上取整行然后判断，这次值对了，将这行记录加入结果集；

4. 重复上一步，直到在 idxe2 上取到的值不是’zhangs’时，循环结束。

在这个过程中，要回主键索引取 4 次数据，也就是扫描了 4 行。

通过这个对比，你很容易就可以发现，使用前缀索引后，可能会导致查询语句读数据的次数

变多。

但是，对于这个查询语句来说，如果你定义的 index2 不是 email(6) 而是 email(7），也

就是说取 email 字段的前 7 个字节来构建索引的话，即满足前缀’zhangss’的记录只有

一个，也能够直接查到 ID2，只扫描一行就结束了。

也就是说使用前缀索引，定义好长度，就可以做到既节省空间，又不用额外增加太多的查询

成本。

于是，你就有个问题：当要给字符串创建前缀索引时，有什么方法能够确定我应该使用多长

的前缀呢？

实际上，我们在建立索引时关注的是区分度，区分度越高越好。因为区分度越高，意味着重

复的键值越少。因此，我们可以通过统计索引上有多少个不同的值来判断要使用多长的前

缀。

首先，你可以使用下面这个语句，算出这个列上有多少个不同的值：

然后，依次选取不同长度的前缀来看这个值，比如我们要看一下 4~7 个字节的前缀索引，

可以用这个语句：

当然，使用前缀索引很可能会损失区分度，所以你需要预先设定一个可以接受的损失比例，

比如 5%。然后，在返回的 L4~L7 中，找出不小于 L * 95% 的值，假设这里 L6、L7 都满

足，你就可以选择前缀长度为 6。

前缀索引对覆盖索引的影响

前面我们说了使用前缀索引可能会增加扫描行数，这会影响到性能。其实，前缀索引的影响

不止如此，我们再看一下另外一个场景。

你先来看看这个 SQL 语句：

与前面例子中的 SQL 语句

1 mysql> select count(distinct email) as L from SUser;

复制代码

1

2

3

4

5

6

mysql> select
 count(distinct left(email,4)）as L4,
 count(distinct left(email,5)）as L5,
 count(distinct left(email,6)）as L6,
 count(distinct left(email,7)）as L7,
from SUser;

复制代码

1 select id,email from SUser where email='zhangssxyz@xxx.com';

复制代码

复制代码

相比，这个语句只要求返回 id 和 email 字段。

所以，如果使用 index1（即 email 整个字符串的索引结构）的话，可以利用覆盖索引，从

index1 查到结果后直接就返回了，不需要回到 ID 索引再去查一次。而如果使用

index2（即 email(6) 索引结构）的话，就不得不回到 ID 索引再去判断 email 字段的值。

即使你将 index2 的定义修改为 email(18) 的前缀索引，这时候虽然 index2 已经包含了所

有的信息，但 InnoDB 还是要回到 id 索引再查一下，因为系统并不确定前缀索引的定义是

否截断了完整信息。

也就是说，使用前缀索引就用不上覆盖索引对查询性能的优化了，这也是你在选择是否使用

前缀索引时需要考虑的一个因素。

其他方式

对于类似于邮箱这样的字段来说，使用前缀索引的效果可能还不错。但是，遇到前缀的区分

度不够好的情况时，我们要怎么办呢？

比如，我们国家的身份证号，一共 18 位，其中前 6 位是地址码，所以同一个县的人的身份

证号前 6 位一般会是相同的。

假设你维护的数据库是一个市的公民信息系统，这时候如果对身份证号做长度为 6 的前缀

索引的话，这个索引的区分度就非常低了。

按照我们前面说的方法，可能你需要创建长度为 12 以上的前缀索引，才能够满足区分度要

求。

但是，索引选取的越长，占用的磁盘空间就越大，相同的数据页能放下的索引值就越少，搜

索的效率也就会越低。

那么，如果我们能够确定业务需求里面只有按照身份证进行等值查询的需求，还有没有别的

处理方法呢？这种方法，既可以占用更小的空间，也能达到相同的查询效率。

1 select id,name,email from SUser where email='zhangssxyz@xxx.com';

答案是，有的。

第一种方式是使用倒序存储。如果你存储身份证号的时候把它倒过来存，每次查询的时候，

你可以这么写：

由于身份证号的最后 6 位没有地址码这样的重复逻辑，所以最后这 6 位很可能就提供了足

够的区分度。当然了，实践中你不要忘记使用 count(distinct) 方法去做个验证。

第二种方式是使用 hash 字段。你可以在表上再创建一个整数字段，来保存身份证的校验

码，同时在这个字段上创建索引。

然后每次插入新记录的时候，都同时用 crc32() 这个函数得到校验码填到这个新字段。由于

校验码可能存在冲突，也就是说两个不同的身份证号通过 crc32() 函数得到的结果可能是相

同的，所以你的查询语句 where 部分要判断 id_card 的值是否精确相同。

这样，索引的长度变成了 4 个字节，比原来小了很多。

接下来，我们再一起看看使用倒序存储和使用 hash 字段这两种方法的异同点。

首先，它们的相同点是，都不支持范围查询。倒序存储的字段上创建的索引是按照倒序字符

串的方式排序的，已经没有办法利用索引方式查出身份证号码在 [ID_X, ID_Y] 的所有市民

了。同样地，hash 字段的方式也只能支持等值查询。

1 mysql> select field_list from t where id_card = reverse('input_id_card_string');

复制代码

1 mysql> alter table t add id_card_crc int unsigned, add index(id_card_crc);

复制代码

1 mysql> select field_list from t where id_card_crc=crc32('input_id_card_string') and id_c

复制代码

它们的区别，主要体现在以下三个方面：

1. 从占用的额外空间来看，倒序存储方式在主键索引上，不会消耗额外的存储空间，而

hash 字段方法需要增加一个字段。当然，倒序存储方式使用 4 个字节的前缀长度应该是

不够的，如果再长一点，这个消耗跟额外这个 hash 字段也差不多抵消了。

2. 在 CPU 消耗方面，倒序方式每次写和读的时候，都需要额外调用一次 reverse 函数，而

hash 字段的方式需要额外调用一次 crc32() 函数。如果只从这两个函数的计算复杂度来

看的话，reverse 函数额外消耗的 CPU 资源会更小些。

3. 从查询效率上看，使用 hash 字段方式的查询性能相对更稳定一些。因为 crc32 算出来

的值虽然有冲突的概率，但是概率非常小，可以认为每次查询的平均扫描行数接近 1。

而倒序存储方式毕竟还是用的前缀索引的方式，也就是说还是会增加扫描行数。

小结

在今天这篇文章中，我跟你聊了聊字符串字段创建索引的场景。我们来回顾一下，你可以使

用的方式有：

1. 直接创建完整索引，这样可能比较占用空间；

2. 创建前缀索引，节省空间，但会增加查询扫描次数，并且不能使用覆盖索引；

3. 倒序存储，再创建前缀索引，用于绕过字符串本身前缀的区分度不够的问题；

4. 创建 hash 字段索引，查询性能稳定，有额外的存储和计算消耗，跟第三种方式一样，

都不支持范围扫描。

在实际应用中，你要根据业务字段的特点选择使用哪种方式。

好了，又到了最后的问题时间。

如果你在维护一个学校的学生信息数据库，学生登录名的统一格式是”学号 @gmail.com",

而学号的规则是：十五位的数字，其中前三位是所在城市编号、第四到第六位是学校编号、

第七位到第十位是入学年份、最后五位是顺序编号。

系统登录的时候都需要学生输入登录名和密码，验证正确后才能继续使用系统。就只考虑登

录验证这个行为的话，你会怎么设计这个登录名的索引呢？

你可以把你的分析思路和设计结果写在留言区里，我会在下一篇文章的末尾和你讨论这个问

题。感谢你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上篇文章中的第一个例子，评论区有几位同学说没有复现，大家要检查一下隔离级别是不是

RR（Repeatable Read，可重复读），创建的表 t 是不是 InnoDB 引擎。我把复现过程做

成了一个视频，供你参考。

在上一篇文章最后，我给你留的问题是，为什么经过这个操作序列，explain 的结果就不对

了？这里，我来为你分析一下原因。

delete 语句删掉了所有的数据，然后再通过 call idata() 插入了 10 万行数据，看上去是覆

盖了原来的 10 万行。

但是，session A 开启了事务并没有提交，所以之前插入的 10 万行数据是不能删除的。这

样，之前的数据每一行数据都有两个版本，旧版本是 delete 之前的数据，新版本是标记为

deleted 的数据。

这样，索引 a 上的数据其实就有两份。

然后你会说，不对啊，主键上的数据也不能删，那没有使用 force index 的语句，使用

explain 命令看到的扫描行数为什么还是 100000 左右？（潜台词，如果这个也翻倍，也许

优化器还会认为选字段 a 作为索引更合适）

是的，不过这个是主键，主键是直接按照表的行数来估计的。而表的行数，优化器直接用的

是 show table status 的值。

这个值的计算方法，我会在后面有文章为你详细讲解。

0:00 / 0:38

评论区留言点赞板：

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

@斜面镜子 Bill 的评论最接近答案；

@某、人 做了两个很不错的对照试验；

@ye7zi 等几位同学很认真的验证，赞态度。大家的机器如果 IO 能力比较差

的话，做这个验证的时候，可以把 innodb_flush_log_at_trx_commit 和

sync_binlog 都设置成 0。

上一篇 10 | MySQL为什么有时候会选错索引？

下一篇 12 | 为什么我的MySQL会“抖”一下？

封建的风
2018-12-08

 90

原谅我偷懒的想法，一个学校每年预估2万新生，50年才100万记录，能节省多少空间，直
接全字段索引。省去了开发转换及局限性风险，碰到超大量迫不得已再用后两种办法

作者回复: 从业务量预估优化和收益，这个意识很好呢�

小文
2018-12-07

 31

首先排除全部索引，占空间，其次排除前缀索引，区分度不高，再排除倒序索引，区分度
还没前缀索引高。
最后hash索引适合，而且只是登录检验，不需要范围查询。

老杨同志
2018-12-07

 20

老师整篇都讲的是字符串索引，但是思考题的学号比较特殊，15位数字+固定后
缀“@gmail.com”
这种特殊的情况，可以把学号使用bigint存储,占4个字节，比前缀索引空间占用要小。跟
hash索引比，
也有区间查询的优势

展开

作者回复: Bigint 8 个字节哦，赞思路。

嗯问题不是唯一答案，大家集思广益哈

18

精选留言 (99)  写留言

某、人2018-12-07 
18

老师针对上一期的答案有两个问题:
1.为什么事务A未提交,之前插入的10W数据不能删除啊？不是应该都进undo和change
buffer了嘛,
根据mvcc查之前的版本就可以了啊。
2.不明白为什么第二次调用插入的存储过程,id就变为100000-200000,id是固定插入的,又…
展开

作者回复: 1. 这里说的“不能删”，其实就是说的，undo log不能删，逻辑上还在

2. 你说的对… 😓我最开始的例子是用自增主键，改完自己晕了，堪误了哈

进阶的码农
2018-12-07

 16

老师按照你视频里的例子又做了一下还是不行
mysql版本8.0.12
+-----------+
| version() |
+-----------+ …
展开

某、人
2018-12-08

 7

回答下今天老师的问题:
1.在user建立索引,由于学号的最后7位才能确定到某个学生.不满足最左前缀,那么select
from where '%1234567%'无法使用索引,是全表扫描。但是这种情况也有优化的办法,如果
该表上的字段比较多,可以这样改写select password from t join (select id from where
user like '%1234567%') as a on a.id=t.id …
展开

Hunter
2018-12-07

 7

是不是还是之前的思路，把邮件的地址里面@的前一段做倒排存储，然后就可以使用前缀
索引了。
或者也可以用年份和顺序号单独存一列，这样就有点类似哈希了，优点是还可以支持范围
查询。

lttzzlll
2018-12-07

 5

只取 四位年份+五位编号 并转化为int类型作为唯一主键

展开

Tony Du
2018-12-07

 5

对于上一期的问题的回答，“索引 a 上的数据其实就有两份”，是不是这样理解，
其中一份是已经被标记为deleted的数据，另一份是新插入的数据，对索引数据的预估把已
经被标记为deleted的数据也算上去了？MySQL对索引数据的预估为什么不去check 被标
记为deleted的数据？
这种场景一旦发生，就会导致预估索引数据不准确，有什么好的方法去避免和解决？ …
展开

作者回复: 理解对的，

方法就是避免长事务（session A 就是模拟一个长事务）

Livis
2018-12-07

 5

课后题思考：可以使用学号拼接密码构建一个hash值，每次登录校验时重新计算hash值匹
配；

不似旧日
2019-03-27

 2

因为mail的格式是学号@gmail.com ,所以@gmail.com可以不存储,使用倒叙前缀索引即
可

ccccc
2019-03-23

 2

实际操作上直接全字段索引就行了，一个学校数据库的数据量和查询压力都不会大到哪儿
去。

如果单从优化数据表的角度：
1. 后缀@gmail可以单独一个字段来存，或者用业务代码来保证，
2. 城市编号和学校编号估计也不会变，也可以用业务代码来配置 …
展开

叶剑峰
2019-01-16

 2

我觉得建立索引和插入数据在实际生产过程中可能是相互迭代的。先建立索引--后插入数
据--再优化索引，再插入数据，所以文中说的几种方法都要知道下，具体不同情况不同
看。像人员表邮箱这个字段，会先建立全字符串索引，要是业务发展到人员表暴增，导致
磁盘比较多，才会想到优化某种长度的字符串索引

展开

作者回复: 差不多是这样的

一般在你说的这个迭代之前，会再多一个“业务量预估”😆

剃刀吗啡
2018-12-12

 2

通常我们都是在创建表的时候根据业务创建索引，这时候分析前缀没意义，因为没数。等
表大了上千万行后再执行前缀分析也不合适啊。
另外，不是不推荐在where中使用函数吗？使用reverse不影响性能？

展开

小潘
2018-12-07

 2

可以考虑根据字符串字段业务特性做进制压缩，业务上一般会限制每个字符的范围(如字母
数字下划线)。
从信息论的角度看，每个字节并没有存8 bit的信息量。如果单个字符的取值只有n种可能性
(把字符转成0到n-1的数字)，可以考虑把n进制转为为更高进制存储(ascii可看做是128进
制)。 …
展开

作者回复: 这个有点高端了😄

崔根禄
2018-12-10

 1

老师，
“session A 开启了事务并没有提交，所以之前插入的 100000万行数据是不能删除的“
有几个疑问：
1.这个不能删除是逻辑上不能删除，仅仅是因为有事务没有commit，要保持读一致性吗？
2.那么是不是说，对于delete的数据，如果没有事务访问，delete之后，逻辑和物理上都…
展开

Smile
2018-12-10

 1

老师，你好，针对session A 和session B 问题统计不一致问题是否可以理解为：

1. 由于session A 对之前的记录还有引用，所以session B即便做了delete，purge还是无
法删除undo log和记录本身，加上新的insert，产生了新的数据页，老的数据页和新的数
据页，对采样的结果产生了影响。 …
展开

作者回复: 1. 是的

2. 你看下，三万多行的对应的key字段和十万多行的key字段不一样

3. 会的

WL
2018-12-09

 1

把该讲内容总结为几个问题, 大家复习的时候可以先尝试回答这些问题检查自己的掌握程度:

 1.
采用整个字符串作为索引. 在查询操作时, 执行顺序是怎样的?
 2. …
展开

李  1

2018-12-07

从占用的额外空间来看，倒序存储方式在主键索引上

为什么是存储在主键上呢，不也是一个普通的二级索引嘛，我的理解他比hash只是不需要
额外的字段
 …
展开

作者回复: 是说跟原来的顺序存储相比，没有增加额外存储空间

leaning_人...
2019-05-14



膜拜大神，学习完后真的发现以前做的sql优化都是不能算作优化。希望能出更多优秀课程

