
16 | “order by”是怎么工作的？
2018-12-19 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 17:01 大小 15.59M

在你开发应用的时候，一定会经常碰到需要根据指定的字段排序来显示结果的需求。还是以

我们前面举例用过的市民表为例，假设你要查询城市是“杭州”的所有人名字，并且按照姓

名排序返回前 1000 个人的姓名、年龄。

假设这个表的部分定义是这样的：



1

2

3

4

5

6

7

CREATE TABLE `t` (
 `id` int(11) NOT NULL,
 `city` varchar(16) NOT NULL,
 `name` varchar(16) NOT NULL,
 `age` int(11) NOT NULL,
 `addr` varchar(128) DEFAULT NULL,
 PRIMARY KEY (`id`),

复制代码



 下载APP 

这时，你的 SQL 语句可以这么写：

这个语句看上去逻辑很清晰，但是你了解它的执行流程吗？今天，我就和你聊聊这个语句是

怎么执行的，以及有什么参数会影响执行的行为。

全字段排序

前面我们介绍过索引，所以你现在就很清楚了，为避免全表扫描，我们需要在 city 字段加

上索引。

在 city 字段上创建索引之后，我们用 explain 命令来看看这个语句的执行情况。

图 1 使用 explain 命令查看语句的执行情况

Extra 这个字段中的“Using filesort”表示的就是需要排序，MySQL 会给每个线程分配一

块内存用于排序，称为 sort_buffer。

为了说明这个 SQL 查询语句的执行过程，我们先来看一下 city 这个索引的示意图。

8

9

 KEY `city` (`city`)
) ENGINE=InnoDB;

1 select city,name,age from t where city='杭州' order by name limit 1000 ;

复制代码

图 2 city 字段的索引示意图

从图中可以看到，满足 city='杭州’条件的行，是从 ID_X 到 ID_(X+N) 的这些记录。

通常情况下，这个语句执行流程如下所示 ：

1. 初始化 sort_buffer，确定放入 name、city、age 这三个字段；

2. 从索引 city 找到第一个满足 city='杭州’条件的主键 id，也就是图中的 ID_X；

3. 到主键 id 索引取出整行，取 name、city、age 三个字段的值，存入 sort_buffer 中；

4. 从索引 city 取下一个记录的主键 id；

5. 重复步骤 3、4 直到 city 的值不满足查询条件为止，对应的主键 id 也就是图中的

ID_Y；

6. 对 sort_buffer 中的数据按照字段 name 做快速排序；

7. 按照排序结果取前 1000 行返回给客户端。

我们暂且把这个排序过程，称为全字段排序，执行流程的示意图如下所示，下一篇文章中我

们还会用到这个排序。

图 3 全字段排序

图中“按 name 排序”这个动作，可能在内存中完成，也可能需要使用外部排序，这取决

于排序所需的内存和参数 sort_buffer_size。

sort_buffer_size，就是 MySQL 为排序开辟的内存（sort_buffer）的大小。如果要排序的

数据量小于 sort_buffer_size，排序就在内存中完成。但如果排序数据量太大，内存放不

下，则不得不利用磁盘临时文件辅助排序。

你可以用下面介绍的方法，来确定一个排序语句是否使用了临时文件。

1

2

3

4

5

6

7

/* 打开 optimizer_trace，只对本线程有效 */
SET optimizer_trace='enabled=on';

/* @a 保存 Innodb_rows_read 的初始值 */
select VARIABLE_VALUE into @a from performance_schema.session_status where variable_nam

/* 执行语句 */

复制代码

这个方法是通过查看 OPTIMIZER_TRACE 的结果来确认的，你可以从

number_of_tmp_files 中看到是否使用了临时文件。

图 4 全排序的 OPTIMIZER_TRACE 部分结果

number_of_tmp_files 表示的是，排序过程中使用的临时文件数。你一定奇怪，为什么需

要 12 个文件？内存放不下时，就需要使用外部排序，外部排序一般使用归并排序算法。可

以这么简单理解，MySQL 将需要排序的数据分成 12 份，每一份单独排序后存在这些临时

文件中。然后把这 12 个有序文件再合并成一个有序的大文件。

如果 sort_buffer_size 超过了需要排序的数据量的大小，number_of_tmp_files 就是 0，

表示排序可以直接在内存中完成。

否则就需要放在临时文件中排序。sort_buffer_size 越小，需要分成的份数越多，

number_of_tmp_files 的值就越大。

接下来，我再和你解释一下图 4 中其他两个值的意思。

8

9

10

11

12

13

14

15

16

17

select city, name,age from t where city='杭州' order by name limit 1000;

/* 查看 OPTIMIZER_TRACE 输出 */
SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`\G

/* @b 保存 Innodb_rows_read 的当前值 */
select VARIABLE_VALUE into @b from performance_schema.session_status where variable_name

/* 计算 Innodb_rows_read 差值 */
select @b-@a;

我们的示例表中有 4000 条满足 city='杭州’的记录，所以你可以看到

examined_rows=4000，表示参与排序的行数是 4000 行。

sort_mode 里面的 packed_additional_fields 的意思是，排序过程对字符串做了“紧

凑”处理。即使 name 字段的定义是 varchar(16)，在排序过程中还是要按照实际长度来分

配空间的。

同时，最后一个查询语句 select @b-@a 的返回结果是 4000，表示整个执行过程只扫描了

4000 行。

这里需要注意的是，为了避免对结论造成干扰，我把 internal_tmp_disk_storage_engine

设置成 MyISAM。否则，select @b-@a 的结果会显示为 4001。

这是因为查询 OPTIMIZER_TRACE 这个表时，需要用到临时表，而

internal_tmp_disk_storage_engine 的默认值是 InnoDB。如果使用的是 InnoDB 引擎的

话，把数据从临时表取出来的时候，会让 Innodb_rows_read 的值加 1。

rowid 排序

在上面这个算法过程里面，只对原表的数据读了一遍，剩下的操作都是在 sort_buffer 和临

时文件中执行的。但这个算法有一个问题，就是如果查询要返回的字段很多的话，那么

sort_buffer 里面要放的字段数太多，这样内存里能够同时放下的行数很少，要分成很多个

临时文件，排序的性能会很差。

所以如果单行很大，这个方法效率不够好。

那么，如果 MySQL 认为排序的单行长度太大会怎么做呢？

接下来，我来修改一个参数，让 MySQL 采用另外一种算法。

1 SET max_length_for_sort_data = 16;

复制代码

max_length_for_sort_data，是 MySQL 中专门控制用于排序的行数据的长度的一个参

数。它的意思是，如果单行的长度超过这个值，MySQL 就认为单行太大，要换一个算法。

city、name、age 这三个字段的定义总长度是 36，我把 max_length_for_sort_data 设置

为 16，我们再来看看计算过程有什么改变。

新的算法放入 sort_buffer 的字段，只有要排序的列（即 name 字段）和主键 id。

但这时，排序的结果就因为少了 city 和 age 字段的值，不能直接返回了，整个执行流程就

变成如下所示的样子：

1. 初始化 sort_buffer，确定放入两个字段，即 name 和 id；

2. 从索引 city 找到第一个满足 city='杭州’条件的主键 id，也就是图中的 ID_X；

3. 到主键 id 索引取出整行，取 name、id 这两个字段，存入 sort_buffer 中；

4. 从索引 city 取下一个记录的主键 id；

5. 重复步骤 3、4 直到不满足 city='杭州’条件为止，也就是图中的 ID_Y；

6. 对 sort_buffer 中的数据按照字段 name 进行排序；

7. 遍历排序结果，取前 1000 行，并按照 id 的值回到原表中取出 city、name 和 age 三个

字段返回给客户端。

这个执行流程的示意图如下，我把它称为 rowid 排序。

图 5 rowid 排序

对比图 3 的全字段排序流程图你会发现，rowid 排序多访问了一次表 t 的主键索引，就是

步骤 7。

需要说明的是，最后的“结果集”是一个逻辑概念，实际上 MySQL 服务端从排序后的

sort_buffer 中依次取出 id，然后到原表查到 city、name 和 age 这三个字段的结果，不需

要在服务端再耗费内存存储结果，是直接返回给客户端的。

根据这个说明过程和图示，你可以想一下，这个时候执行 select @b-@a，结果会是多少

呢？

现在，我们就来看看结果有什么不同。

首先，图中的 examined_rows 的值还是 4000，表示用于排序的数据是 4000 行。但是

select @b-@a 这个语句的值变成 5000 了。

因为这时候除了排序过程外，在排序完成后，还要根据 id 去原表取值。由于语句是 limit

1000，因此会多读 1000 行。

图 6 rowid 排序的 OPTIMIZER_TRACE 部分输出

从 OPTIMIZER_TRACE 的结果中，你还能看到另外两个信息也变了。

全字段排序 VS rowid 排序

我们来分析一下，从这两个执行流程里，还能得出什么结论。

如果 MySQL 实在是担心排序内存太小，会影响排序效率，才会采用 rowid 排序算法，这

样排序过程中一次可以排序更多行，但是需要再回到原表去取数据。

如果 MySQL 认为内存足够大，会优先选择全字段排序，把需要的字段都放到 sort_buffer

中，这样排序后就会直接从内存里面返回查询结果了，不用再回到原表去取数据。

这也就体现了 MySQL 的一个设计思想：如果内存够，就要多利用内存，尽量减少磁盘访

问。

对于 InnoDB 表来说，rowid 排序会要求回表多造成磁盘读，因此不会被优先选择。

sort_mode 变成了 <sort_key, rowid>，表示参与排序的只有 name 和 id 这两个字

段。

number_of_tmp_files 变成 10 了，是因为这时候参与排序的行数虽然仍然是 4000 行，

但是每一行都变小了，因此需要排序的总数据量就变小了，需要的临时文件也相应地变少

了。

这个结论看上去有点废话的感觉，但是你要记住它，下一篇文章我们就会用到。

看到这里，你就了解了，MySQL 做排序是一个成本比较高的操作。那么你会问，是不是所

有的 order by 都需要排序操作呢？如果不排序就能得到正确的结果，那对系统的消耗会小

很多，语句的执行时间也会变得更短。

其实，并不是所有的 order by 语句，都需要排序操作的。从上面分析的执行过程，我们可

以看到，MySQL 之所以需要生成临时表，并且在临时表上做排序操作，其原因是原来的数

据都是无序的。

你可以设想下，如果能够保证从 city 这个索引上取出来的行，天然就是按照 name 递增排

序的话，是不是就可以不用再排序了呢？

确实是这样的。

所以，我们可以在这个市民表上创建一个 city 和 name 的联合索引，对应的 SQL 语句

是：

作为与 city 索引的对比，我们来看看这个索引的示意图。

1 alter table t add index city_user(city, name);

复制代码

图 7 city 和 name 联合索引示意图

在这个索引里面，我们依然可以用树搜索的方式定位到第一个满足 city='杭州’的记录，并

且额外确保了，接下来按顺序取“下一条记录”的遍历过程中，只要 city 的值是杭州，

name 的值就一定是有序的。

这样整个查询过程的流程就变成了：

1. 从索引 (city,name) 找到第一个满足 city='杭州’条件的主键 id；

2. 到主键 id 索引取出整行，取 name、city、age 三个字段的值，作为结果集的一部分直

接返回；

3. 从索引 (city,name) 取下一个记录主键 id；

4. 重复步骤 2、3，直到查到第 1000 条记录，或者是不满足 city='杭州’条件时循环结

束。

图 8 引入 (city,name) 联合索引后，查询语句的执行计划

可以看到，这个查询过程不需要临时表，也不需要排序。接下来，我们用 explain 的结果

来印证一下。

图 9 引入 (city,name) 联合索引后，查询语句的执行计划

从图中可以看到，Extra 字段中没有 Using filesort 了，也就是不需要排序了。而且由于

(city,name) 这个联合索引本身有序，所以这个查询也不用把 4000 行全都读一遍，只要找

到满足条件的前 1000 条记录就可以退出了。也就是说，在我们这个例子里，只需要扫描

1000 次。

既然说到这里了，我们再往前讨论，这个语句的执行流程有没有可能进一步简化呢？不知道

你还记不记得，我在第 5 篇文章《 深入浅出索引（下）》中，和你介绍的覆盖索引。

https://time.geekbang.org/column/article/69636

这里我们可以再稍微复习一下。覆盖索引是指，索引上的信息足够满足查询请求，不需要再

回到主键索引上去取数据。

按照覆盖索引的概念，我们可以再优化一下这个查询语句的执行流程。

针对这个查询，我们可以创建一个 city、name 和 age 的联合索引，对应的 SQL 语句就

是：

这时，对于 city 字段的值相同的行来说，还是按照 name 字段的值递增排序的，此时的查

询语句也就不再需要排序了。这样整个查询语句的执行流程就变成了：

1. 从索引 (city,name,age) 找到第一个满足 city='杭州’条件的记录，取出其中的 city、

name 和 age 这三个字段的值，作为结果集的一部分直接返回；

2. 从索引 (city,name,age) 取下一个记录，同样取出这三个字段的值，作为结果集的一部

分直接返回；

3. 重复执行步骤 2，直到查到第 1000 条记录，或者是不满足 city='杭州’条件时循环结

束。

1 alter table t add index city_user_age(city, name, age);

复制代码

图 10 引入 (city,name,age) 联合索引后，查询语句的执行流程

然后，我们再来看看 explain 的结果。

图 11 引入 (city,name,age) 联合索引后，查询语句的执行计划

可以看到，Extra 字段里面多了“Using index”，表示的就是使用了覆盖索引，性能上会

快很多。

当然，这里并不是说要为了每个查询能用上覆盖索引，就要把语句中涉及的字段都建上联合

索引，毕竟索引还是有维护代价的。这是一个需要权衡的决定。

小结

今天这篇文章，我和你介绍了 MySQL 里面 order by 语句的几种算法流程。

在开发系统的时候，你总是不可避免地会使用到 order by 语句。你心里要清楚每个语句的

排序逻辑是怎么实现的，还要能够分析出在最坏情况下，每个语句的执行对系统资源的消

耗，这样才能做到下笔如有神，不犯低级错误。

最后，我给你留下一个思考题吧。

假设你的表里面已经有了 city_name(city, name) 这个联合索引，然后你要查杭州和苏州两

个城市中所有的市民的姓名，并且按名字排序，显示前 100 条记录。如果 SQL 查询语句是

这么写的 ：

那么，这个语句执行的时候会有排序过程吗，为什么？

如果业务端代码由你来开发，需要实现一个在数据库端不需要排序的方案，你会怎么实现

呢？

进一步地，如果有分页需求，要显示第 101 页，也就是说语句最后要改成 “limit

10000,100”， 你的实现方法又会是什么呢？

你可以把你的思考和观点写在留言区里，我会在下一篇文章的末尾和你讨论这个问题。感谢

你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期的问题是，当 MySQL 去更新一行，但是要修改的值跟原来的值是相同的，这时候

MySQL 会真的去执行一次修改吗？还是看到值相同就直接返回呢？

这是第一次我们课后问题的三个选项都有同学选的，所以我要和你需要详细说明一下。

1 mysql> select * from t where city in ('杭州'," 苏州 ") order by name limit 100;

复制代码

第一个选项是，MySQL 读出数据，发现值与原来相同，不更新，直接返回，执行结束。这

里我们可以用一个锁实验来确认。

假设，当前表 t 里的值是 (1,2)。

图 12 锁验证方式

session B 的 update 语句被 blocked 了，加锁这个动作是 InnoDB 才能做的，所以排除

选项 1。

第二个选项是，MySQL 调用了 InnoDB 引擎提供的接口，但是引擎发现值与原来相同，不

更新，直接返回。有没有这种可能呢？这里我用一个可见性实验来确认。

假设当前表里的值是 (1,2)。

图 13 可见性验证方式

session A 的第二个 select 语句是一致性读（快照读)，它是不能看见 session B 的更新

的。

现在它返回的是 (1,3)，表示它看见了某个新的版本，这个版本只能是 session A 自己的

update 语句做更新的时候生成。（如果你对这个逻辑有疑惑的话，可以回顾下第 8 篇文章

《事务到底是隔离的还是不隔离的？》中的相关内容）

所以，我们上期思考题的答案应该是选项 3，即：InnoDB 认真执行了“把这个值修改成

(1,2)"这个操作，该加锁的加锁，该更新的更新。

然后你会说，MySQL 怎么这么笨，就不会更新前判断一下值是不是相同吗？如果判断一

下，不就不用浪费 InnoDB 操作，多去更新一次了？

其实 MySQL 是确认了的。只是在这个语句里面，MySQL 认为读出来的值，只有一个确定

的 (id=1), 而要写的是 (a=3)，只从这两个信息是看不出来“不需要修改”的。

作为验证，你可以看一下下面这个例子。

图 14 可见性验证方式 -- 对照

补充说明：

上面我们的验证结果都是在 binlog_format=statement 格式下进行的。

https://time.geekbang.org/column/article/70562

@didiren 补充了一个 case， 如果是 binlog_format=row 并且

binlog_row_image=FULL 的时候，由于 MySQL 需要在 binlog 里面记录所有的字段，所

以在读数据的时候就会把所有数据都读出来了。

根据上面说的规则，“既然读了数据，就会判断”， 因此在这时候，select * from t

where id=1，结果就是“返回 (1,2)”。

同理，如果是 binlog_row_image=NOBLOB, 会读出除 blob 外的所有字段，在我们这个

例子里，结果还是“返回 (1,2)”。

对应的代码如图 15 所示。这是 MySQL 5.6 版本引入的，在此之前我没有看过。所以，特

此说明。

图 15 binlog_row_image=FULL 读字段逻辑

类似的，@mahonebags 同学提到了 timestamp 字段的问题。结论是：如果表中有

timestamp 字段而且设置了自动更新的话，那么更新“别的字段”的时候，MySQL 会读

入所有涉及的字段，这样通过判断，就会发现不需要修改。

这两个点我会在后面讲更新性能的文章中再展开。

评论区留言点赞板：

@Gavin 、@melon、@阿建 等同学提到了锁验证法；

@郭江伟 同学提到了两个点，都非常好，有去实际验证。结论是这样的：

第一，hexdump 看出来没改应该是 WAL 机制生效了，要过一会儿，或者把

库 shutdown 看看。

第二，binlog 没写是 MySQL Server 层知道行的值没变，所以故意不写的，

这个是在 row 格式下的策略。你可以把 binlog_format 改成 statement 再

验证下。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 直播回顾 | 林晓斌：我的 MySQL 心路历程

下一篇 17 | 如何正确地显示随机消息？

某、人 置顶

2018-12-20
 39

回答下@发条橙子同学的问题:
问题一：
1)无条件查询如果只有order by create_time,即便create_time上有索引,也不会使用到。
因为优化器认为走二级索引再去回表成本比全表扫描排序更高。
所以选择走全表扫描,然后根据老师讲的两种方式选择一种来排序 …
展开

作者回复: 发条橙子同学的问题：

问题1:你回答得比我回复的答案还好！�

问题2:这个后面我们展开哈，要配图才能说得清😄

问题3:回答得也很好，需要注意的是255这个边界。小于255都需要一个字节记录长度，超过255

精选留言 (109)  写留言

就需要两个字节

你的问题：#好问题_#

1. 排序相关的内存在排序后就free掉还给系统了

2. 读的时候加了写锁的

3. 堆排序要读所有行的，只读一次，我估计你已经理解对了😄

didiren 置顶

2018-12-19
 11

刚才又测了一下，在binlog-row-image=full的情况下，第二次update是不写redolog
的，说明update并没有发生
这样我就理解了，当full时，mysql需要读到在更新时读到a值，所以会判断a值不变，不需
要更新，与你给出的update t set a=3 where id=1 and a=3原理相同，但binlog-row-
image会影响查询结果还是会让人吃一惊

展开

作者回复: 是的。

这个我也盲点了。

但是细想MySQL 选择这个策略又是合理的。

我需要再更新一下专栏内容

XD 置顶

2019-02-27
 7

老师，基于早上知道的sort_buffer是在server层，我重新理解了下rowid排序的过程，
1，执行器查看表定义，发现name、city、age字段的长度之和超过
max_length_for_sort_data，所以初始化sort_buffer的时候只放入id和name字段。
2，执行器调用存储引擎的读数据接口，依次获取满足条件的数据的id和name，存入
sort_buffer。 …
展开

作者回复:

不仅对，而且非常好！👍👍

把两个知识点连起来了。是的：

1. rows_examined就是“server层调用引擎取一行的时候”加1；

2. 引擎内部自己调用，读取行，不加1；

再补充一个例子：

加索引的时候，也要扫描全表，但如果是inplace DDL（@第13篇），你会看到扫描行数是0，也

是因为这些扫描动作都是引擎内部自己调用的。

null 置顶

2018-12-21
 4

re: 问题3:回答得也很好，需要注意的是255这个边界。小于255都需要一个字节记录长
度，超过255就需要两个字节

11 月过数据库设计方案，总监现场抛了一个问题，就是关于 varchar 255 的。现在回看，
木有人回答到点上，都说是历史原因。 …
展开

作者回复: 最怕的回答“历史原因”、“大家都这么做的所以…”、“别人要求的” 😄

老杨同志
2018-12-19

 20

1)
mysql> select * from t where city in ('杭州'," 苏州 ") order by name limit 100;
需要排序
原因是索引顺序城市、名称 与 单独按name排序的顺序不一致。
 …
展开

作者回复: 从业务上砍掉功能，这个意识很好👌�

波波  11

2018-12-19

笔记:
1.MySQL会为每个线程分配一个内存（sort_buffer）用于排序该内存大小为
sort_buffer_size
 1>如果排序的数据量小于sort_buffer_size，排序将会在内存中完成
 2>如果排序数据量很大，内存中无法存下这么多数据，则会使用磁盘临时文件来辅助排…
展开

作者回复: �

峰
2018-12-19

 4

由于city有两个值，相当于匹配到了索引树的两段区域，虽然各自都是按name排序，但整
体需要做一次归并，当然只是limit100，所以够数就行。再然后如果需要不做排序，业务
端就按city不同的取值查询两次，每次都limit100，然后业务端做归并处理喽。再然后要做
分页的话，好吧，我的思路是先整出一张临时的结果表，create table as select
rownumber,* from t where city=x order by name(写的不对哈，只是表达意思，…
展开

作者回复: 分页这个再考虑考虑哈😄

发条橙子 ...
2018-12-20

 3

老师 ， 接前面 create_time的回答 。 语句确实是 select * from t order by create_time
desc ;

老师是指 优化器会根据 order by create_time 来选择使用 create_time 索引么
 …
展开

作者回复: 嗯 where和 order都会共同影响哦，今天这篇你要再看看最后加了联合索引以后，语句

的执行逻辑

Analyze table 立功啦😄

didiren
2018-12-19

 3

感谢！针对我之前提出的疑问，我又详细的做了实验，发现一个新的问题，我感觉是个
bug，希望解答
SessionA
mysql> show variables like '%binlog_row_image%';
| Variable_name | Value | …
展开

作者回复: ！！！

你说的对

我验证的是statement格式。

MySQL 看来选了不错吧路径。

这个我之前真不知道😓

多谢

发条橙子 ...
2018-12-20

 2

正好有个 order by 使用场景 ， 有个页面，需要按数据插入时间倒序来查看一张记录表的
信息 ，因为除了分页的参数 ， 没有其他 where 的条件 ，所以除了主键外没有其他索引
。
 …
展开

作者回复: 你说的这样场景，加上create_time索引的话，是可以加速的呀，

语句是这样吗？select * from t order by create_time desk limit 100? 如果是这样，创建索引有

用的。

问题二后面会有文章会说哈

问题三 嗯，这个也会安排文章说到

赵海亮
2018-12-19

 2

老师你好，全字段排序那一节，我做了实验，我的排序缓存大小是1M， examined rows
是7715892，查询的三个字段都有数据，那么如果这些数据都放到缓存应该需要
（4+8+11）*7715892等于160M，但是我看了都没有用到临时表，这是为什么？

CREATE TABLE `phone_call_logs` (…
展开

作者回复: 好问题，明天见 😁

（明天的一篇也是跟排序有关的哦）

cyberbit
2018-12-19

 2

1.不会有排序，这种情况属于《高性能mysql》里提到的“in技法”，符合索引的最左原
则，是2个等值查询，可以用到右边的索引列。
2.分页查询，可以用延迟关联来优化：
select * from t join …
展开

尘封
2018-12-19

 2

请问，第7步中遍历排序结果，取前 1000 行，并按照 id 的值回到原表中取出 city、name
和 age 三个字段返回给客户端：这里会把id再进行排序吗？转随机io为顺序io？

作者回复: 要是排序就结果不符合order by 的语义逻辑了…

1

毓殇笳2019-03-07 
1

图 14 可见性验证方式 -- 对照中

session A 的 update t set a = 3 where id = 1 and a = 3

会不会有当前读？如果当前读的话，那是不是会读到session B的更新的值？ …
展开

胡楚坚
2019-02-21

 1

不好意思，上个留言没打完。
问题一，在跟max_length_for_sort_data坐比较时，mysql是怎么判断一行数据的大小
的？是直接根据表定义字段的大小吗？

问题二，另外这‘一行’的含义是整行数据，还是单单最终引擎层需要返回的字段(即…
展开

作者回复: 1. 需要的字段的定义大小的和

2. 好问题。首先取决于使用的算法。

 a) 如果是全字段排序就是select字段+where字段+order by字段,

 b) 如果是row_id排序，就是order by字段+row_id

看不到de颜...
2019-02-02

 1

关于上期问题里的最后一个例子不太明白，还请老师指点一下。按说在更新操作的时候应
该是当前读，那么应该能读到id=1 and a = 3的记录并修改。那么为什么再select还会查
到a = 2。难道是即便update但是where条件也是快照读？但是如果这样那么幻读的问题不
就不会存在了吗？（B insert了一条记录，此时A范围update后再select会把B insert的语
句查出来）

展开

作者回复: 你是说图14这里对吧，

这里update语句自己是当前读，但是它没有更新数据；

所以之后的查询还是看不到(1,3)这个版本。

好问题👍

唐名之
2019-01-09

 1

1：用@cyberbit 提供的方式，执行计划是不会使用到排序，但执行时间比使用排序消耗的
多；
2：分页limit过大时会导致大量排序，可以记录上一页最后的ID，下一页查询条件带上
where ID>上一页最后ID limit 100

展开

作者回复: 1. 为什么这么说呢？

2. 对的

WL
2018-12-23

 1

把该讲内容总结为几个问题, 大家复习的时候可以先尝试回答这些问题检查自己的掌握程度:
 1.
全字段排序的流程是怎么样的?
 2.
sort_buffer_size, number_of_tmp_files, packed_additional_fields 这几个参数各是什…
展开

明亮
2018-12-19

 1

需要排序，可以将原来的索引中name字段放前面，city字段放后面，来建索引就可以了

作者回复: 这样不太好哈，变成全索引扫描了

jacy
2019-05-17



为什么覆盖索引的执行计划显示的是4000行？

展开

