
20 | 幻读是什么，幻读有什么问题？
2018-12-28 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 19:23 大小 17.77M

在上一篇文章最后，我给你留了一个关于加锁规则的问题。今天，我们就从这个问题说起

吧。

为了便于说明问题，这一篇文章，我们就先使用一个小一点儿的表。建表和初始化语句如下

（为了便于本期的例子说明，我把上篇文章中用到的表结构做了点儿修改）：



1

2

3

4

5

6

7

CREATE TABLE `t` (
 `id` int(11) NOT NULL,
 `c` int(11) DEFAULT NULL,
 `d` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `c` (`c`)
) ENGINE=InnoDB;

复制代码



 下载APP 

这个表除了主键 id 外，还有一个索引 c，初始化语句在表中插入了 6 行数据。

上期我留给你的问题是，下面的语句序列，是怎么加锁的，加的锁又是什么时候释放的呢？

比较好理解的是，这个语句会命中 d=5 的这一行，对应的主键 id=5，因此在 select 语句

执行完成后，id=5 这一行会加一个写锁，而且由于两阶段锁协议，这个写锁会在执行

commit 语句的时候释放。

由于字段 d 上没有索引，因此这条查询语句会做全表扫描。那么，其他被扫描到的，但是

不满足条件的 5 行记录上，会不会被加锁呢？

我们知道，InnoDB 的默认事务隔离级别是可重复读，所以本文接下来没有特殊说明的部

分，都是设定在可重复读隔离级别下。

幻读是什么？

现在，我们就来分析一下，如果只在 id=5 这一行加锁，而其他行的不加锁的话，会怎么

样。

下面先来看一下这个场景（注意：这是我假设的一个场景）：

8

9

10

insert into t values(0,0,0),(5,5,5),
(10,10,10),(15,15,15),(20,20,20),(25,25,25);

1

2

3

begin;
select * from t where d=5 for update;
commit;

复制代码

图 1 假设只在 id=5 这一行加行锁

可以看到，session A 里执行了三次查询，分别是 Q1、Q2 和 Q3。它们的 SQL 语句相

同，都是 select * from t where d=5 for update。这个语句的意思你应该很清楚了，查所

有 d=5 的行，而且使用的是当前读，并且加上写锁。现在，我们来看一下这三条 SQL 语

句，分别会返回什么结果。

1. Q1 只返回 id=5 这一行；

2. 在 T2 时刻，session B 把 id=0 这一行的 d 值改成了 5，因此 T3 时刻 Q2 查出来的是

id=0 和 id=5 这两行；

3. 在 T4 时刻，session C 又插入一行（1,1,5），因此 T5 时刻 Q3 查出来的是 id=0、

id=1 和 id=5 的这三行。

其中，Q3 读到 id=1 这一行的现象，被称为“幻读”。也就是说，幻读指的是一个事务在

前后两次查询同一个范围的时候，后一次查询看到了前一次查询没有看到的行。

这里，我需要对“幻读”做一个说明：

1. 在可重复读隔离级别下，普通的查询是快照读，是不会看到别的事务插入的数据的。因

此，幻读在“当前读”下才会出现。

2. 上面 session B 的修改结果，被 session A 之后的 select 语句用“当前读”看到，不能

称为幻读。幻读仅专指“新插入的行”。

如果只从第 8 篇文章《事务到底是隔离的还是不隔离的？》我们学到的事务可见性规则来

分析的话，上面这三条 SQL 语句的返回结果都没有问题。

因为这三个查询都是加了 for update，都是当前读。而当前读的规则，就是要能读到所有

已经提交的记录的最新值。并且，session B 和 sessionC 的两条语句，执行后就会提交，

所以 Q2 和 Q3 就是应该看到这两个事务的操作效果，而且也看到了，这跟事务的可见性规

则并不矛盾。

但是，这是不是真的没问题呢？

不，这里还真就有问题。

幻读有什么问题？

首先是语义上的。session A 在 T1 时刻就声明了，“我要把所有 d=5 的行锁住，不准别

的事务进行读写操作”。而实际上，这个语义被破坏了。

如果现在这样看感觉还不明显的话，我再往 session B 和 session C 里面分别加一条 SQL

语句，你再看看会出现什么现象。

图 2 假设只在 id=5 这一行加行锁 -- 语义被破坏

https://time.geekbang.org/column/article/70562

session B 的第二条语句 update t set c=5 where id=0，语义是“我把 id=0、d=5 这一

行的 c 值，改成了 5”。

由于在 T1 时刻，session A 还只是给 id=5 这一行加了行锁， 并没有给 id=0 这行加上

锁。因此，session B 在 T2 时刻，是可以执行这两条 update 语句的。这样，就破坏了

session A 里 Q1 语句要锁住所有 d=5 的行的加锁声明。

session C 也是一样的道理，对 id=1 这一行的修改，也是破坏了 Q1 的加锁声明。

其次，是数据一致性的问题。

我们知道，锁的设计是为了保证数据的一致性。而这个一致性，不止是数据库内部数据状态

在此刻的一致性，还包含了数据和日志在逻辑上的一致性。

为了说明这个问题，我给 session A 在 T1 时刻再加一个更新语句，即：update t set

d=100 where d=5。

图 3 假设只在 id=5 这一行加行锁 -- 数据一致性问题

update 的加锁语义和 select …for update 是一致的，所以这时候加上这条 update 语句

也很合理。session A 声明说“要给 d=5 的语句加上锁”，就是为了要更新数据，新加的

这条 update 语句就是把它认为加上了锁的这一行的 d 值修改成了 100。

现在，我们来分析一下图 3 执行完成后，数据库里会是什么结果。

1. 经过 T1 时刻，id=5 这一行变成 (5,5,100)，当然这个结果最终是在 T6 时刻正式提交的

;

2. 经过 T2 时刻，id=0 这一行变成 (0,5,5);

3. 经过 T4 时刻，表里面多了一行 (1,5,5);

4. 其他行跟这个执行序列无关，保持不变。

这样看，这些数据也没啥问题，但是我们再来看看这时候 binlog 里面的内容。

1. T2 时刻，session B 事务提交，写入了两条语句；

2. T4 时刻，session C 事务提交，写入了两条语句；

3. T6 时刻，session A 事务提交，写入了 update t set d=100 where d=5 这条语句。

我统一放到一起的话，就是这样的：

好，你应该看出问题了。这个语句序列，不论是拿到备库去执行，还是以后用 binlog 来克

隆一个库，这三行的结果，都变成了 (0,5,100)、(1,5,100) 和 (5,5,100)。

也就是说，id=0 和 id=1 这两行，发生了数据不一致。这个问题很严重，是不行的。

到这里，我们再回顾一下，这个数据不一致到底是怎么引入的？

1

2

3

4

5

6

7

update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/

insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/

update t set d=100 where d=5;/* 所有 d=5 的行，d 改成 100*/

复制代码

我们分析一下可以知道，这是我们假设“select * from t where d=5 for update 这条语句

只给 d=5 这一行，也就是 id=5 的这一行加锁”导致的。

所以我们认为，上面的设定不合理，要改。

那怎么改呢？我们把扫描过程中碰到的行，也都加上写锁，再来看看执行效果。

图 4 假设扫描到的行都被加上了行锁

由于 session A 把所有的行都加了写锁，所以 session B 在执行第一个 update 语句的时

候就被锁住了。需要等到 T6 时刻 session A 提交以后，session B 才能继续执行。

这样对于 id=0 这一行，在数据库里的最终结果还是 (0,5,5)。在 binlog 里面，执行序列是

这样的：

1

2

3

4

5

insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/

update t set d=100 where d=5;/* 所有 d=5 的行，d 改成 100*/

复制代码

可以看到，按照日志顺序执行，id=0 这一行的最终结果也是 (0,5,5)。所以，id=0 这一行

的问题解决了。

但同时你也可以看到，id=1 这一行，在数据库里面的结果是 (1,5,5)，而根据 binlog 的执

行结果是 (1,5,100)，也就是说幻读的问题还是没有解决。为什么我们已经这么“凶

残”地，把所有的记录都上了锁，还是阻止不了 id=1 这一行的插入和更新呢？

原因很简单。在 T3 时刻，我们给所有行加锁的时候，id=1 这一行还不存在，不存在也就

加不上锁。

也就是说，即使把所有的记录都加上锁，还是阻止不了新插入的记录，这也是为什么“幻

读”会被单独拿出来解决的原因。

到这里，其实我们刚说明完文章的标题 ：幻读的定义和幻读有什么问题。

接下来，我们再看看 InnoDB 怎么解决幻读的问题。

如何解决幻读？

现在你知道了，产生幻读的原因是，行锁只能锁住行，但是新插入记录这个动作，要更新的

是记录之间的“间隙”。因此，为了解决幻读问题，InnoDB 只好引入新的锁，也就是间隙

锁 (Gap Lock)。

顾名思义，间隙锁，锁的就是两个值之间的空隙。比如文章开头的表 t，初始化插入了 6 个

记录，这就产生了 7 个间隙。

6

7

update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/

图 5 表 t 主键索引上的行锁和间隙锁

这样，当你执行 select * from t where d=5 for update 的时候，就不止是给数据库中已

有的 6 个记录加上了行锁，还同时加了 7 个间隙锁。这样就确保了无法再插入新的记录。

也就是说这时候，在一行行扫描的过程中，不仅将给行加上了行锁，还给行两边的空隙，也

加上了间隙锁。

现在你知道了，数据行是可以加上锁的实体，数据行之间的间隙，也是可以加上锁的实体。

但是间隙锁跟我们之前碰到过的锁都不太一样。

比如行锁，分成读锁和写锁。下图就是这两种类型行锁的冲突关系。

图 6 两种行锁间的冲突关系

也就是说，跟行锁有冲突关系的是“另外一个行锁”。

但是间隙锁不一样，跟间隙锁存在冲突关系的，是“往这个间隙中插入一个记录”这个操

作。间隙锁之间都不存在冲突关系。

这句话不太好理解，我给你举个例子：

图 7 间隙锁之间不互锁

这里 session B 并不会被堵住。因为表 t 里并没有 c=7 这个记录，因此 session A 加的是

间隙锁 (5,10)。而 session B 也是在这个间隙加的间隙锁。它们有共同的目标，即：保护这

个间隙，不允许插入值。但，它们之间是不冲突的。

间隙锁和行锁合称 next-key lock，每个 next-key lock 是前开后闭区间。也就是说，我们

的表 t 初始化以后，如果用 select * from t for update 要把整个表所有记录锁起来，就形

成了 7 个 next-key lock，分别是 (-∞,0]、(0,5]、(5,10]、(10,15]、(15,20]、(20, 25]、

(25, +supremum]。

你可能会问说，这个 supremum 从哪儿来的呢？

这是因为 +∞是开区间。实现上，InnoDB 给每个索引加了一个不存在的最大值

supremum，这样才符合我们前面说的“都是前开后闭区间”。

间隙锁和 next-key lock 的引入，帮我们解决了幻读的问题，但同时也带来了一些“困

扰”。

在前面的文章中，就有同学提到了这个问题。我把他的问题转述一下，对应到我们这个例子

的表来说，业务逻辑这样的：任意锁住一行，如果这一行不存在的话就插入，如果存在这一

备注：这篇文章中，如果没有特别说明，我们把间隙锁记为开区间，把 next-

key lock 记为前开后闭区间。

行就更新它的数据，代码如下：

可能你会说，这个不是 insert … on duplicate key update 就能解决吗？但其实在有多个

唯一键的时候，这个方法是不能满足这位提问同学的需求的。至于为什么，我会在后面的文

章中再展开说明。

现在，我们就只讨论这个逻辑。

这个同学碰到的现象是，这个逻辑一旦有并发，就会碰到死锁。你一定也觉得奇怪，这个逻

辑每次操作前用 for update 锁起来，已经是最严格的模式了，怎么还会有死锁呢？

这里，我用两个 session 来模拟并发，并假设 N=9。

图 8 间隙锁导致的死锁

1

2

3

4

5

6

7

8

9

begin;
select * from t where id=N for update;

/* 如果行不存在 */
insert into t values(N,N,N);
/* 如果行存在 */
update t set d=N set id=N;

commit;

复制代码

你看到了，其实都不需要用到后面的 update 语句，就已经形成死锁了。我们按语句执行顺

序来分析一下：

1. session A 执行 select … for update 语句，由于 id=9 这一行并不存在，因此会加上间

隙锁 (5,10);

2. session B 执行 select … for update 语句，同样会加上间隙锁 (5,10)，间隙锁之间不会

冲突，因此这个语句可以执行成功；

3. session B 试图插入一行 (9,9,9)，被 session A 的间隙锁挡住了，只好进入等待；

4. session A 试图插入一行 (9,9,9)，被 session B 的间隙锁挡住了。

至此，两个 session 进入互相等待状态，形成死锁。当然，InnoDB 的死锁检测马上就发现

了这对死锁关系，让 session A 的 insert 语句报错返回了。

你现在知道了，间隙锁的引入，可能会导致同样的语句锁住更大的范围，这其实是影响了并

发度的。其实，这还只是一个简单的例子，在下一篇文章中我们还会碰到更多、更复杂的例

子。

你可能会说，为了解决幻读的问题，我们引入了这么一大串内容，有没有更简单一点的处理

方法呢。

我在文章一开始就说过，如果没有特别说明，今天和你分析的问题都是在可重复读隔离级别

下的，间隙锁是在可重复读隔离级别下才会生效的。所以，你如果把隔离级别设置为读提交

的话，就没有间隙锁了。但同时，你要解决可能出现的数据和日志不一致问题，需要把

binlog 格式设置为 row。这，也是现在不少公司使用的配置组合。

前面文章的评论区有同学留言说，他们公司就使用的是读提交隔离级别加

binlog_format=row 的组合。他曾问他们公司的 DBA 说，你为什么要这么配置。DBA 直

接答复说，因为大家都这么用呀。

所以，这个同学在评论区就问说，这个配置到底合不合理。

关于这个问题本身的答案是，如果读提交隔离级别够用，也就是说，业务不需要可重复读的

保证，这样考虑到读提交下操作数据的锁范围更小（没有间隙锁），这个选择是合理的。

但其实我想说的是，配置是否合理，跟业务场景有关，需要具体问题具体分析。

但是，如果 DBA 认为之所以这么用的原因是“大家都这么用”，那就有问题了，或者说，

迟早会出问题。

比如说，大家都用读提交，可是逻辑备份的时候，mysqldump 为什么要把备份线程设置成

可重复读呢？（这个我在前面的文章中已经解释过了，你可以再回顾下第 6 篇文章《全局

锁和表锁 ：给表加个字段怎么有这么多阻碍？》的内容）

然后，在备份期间，备份线程用的是可重复读，而业务线程用的是读提交。同时存在两种事

务隔离级别，会不会有问题？

进一步地，这两个不同的隔离级别现象有什么不一样的，关于我们的业务，“用读提交就够

了”这个结论是怎么得到的？

如果业务开发和运维团队这些问题都没有弄清楚，那么“没问题”这个结论，本身就是有问

题的。

小结

今天我们从上一篇文章的课后问题说起，提到了全表扫描的加锁方式。我们发现即使给所有

的行都加上行锁，仍然无法解决幻读问题，因此引入了间隙锁的概念。

我碰到过很多对数据库有一定了解的业务开发人员，他们在设计数据表结构和业务 SQL 语

句的时候，对行锁有很准确的认识，但却很少考虑到间隙锁。最后的结果，就是生产库上会

经常出现由于间隙锁导致的死锁现象。

行锁确实比较直观，判断规则也相对简单，间隙锁的引入会影响系统的并发度，也增加了锁

分析的复杂度，但也有章可循。下一篇文章，我就会为你讲解 InnoDB 的加锁规则，帮你

理顺这其中的“章法”。

作为对下一篇文章的预习，我给你留下一个思考题。

https://time.geekbang.org/column/article/69862

图 9 事务进入锁等待状态

如果你之前没有了解过本篇文章的相关内容，一定觉得这三个语句简直是风马牛不相及。但

实际上，这里 session B 和 session C 的 insert 语句都会进入锁等待状态。

你可以试着分析一下，出现这种情况的原因是什么？

这里需要说明的是，这其实是我在下一篇文章介绍加锁规则后才能回答的问题，是留给你作

为预习的，其中 session C 被锁住这个分析是有点难度的。如果你没有分析出来，也不要

气馁，我会在下一篇文章和你详细说明。

你也可以说说，你的线上 MySQL 配置的是什么隔离级别，为什么会这么配置？你有没有

碰到什么场景，是必须使用可重复读隔离级别的呢？

你可以把你的碰到的场景和分析写在留言区里，我会在下一篇文章选取有趣的评论跟大家一

起分享和分析。感谢你的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我们在本文的开头回答了上期问题。有同学的回答中还说明了读提交隔离级别下，在语句执

行完成后，是只有行锁的。而且语句执行完成后，InnoDB 就会把不满足条件的行行锁去

掉。

当然了，c=5 这一行的行锁，还是会等到 commit 的时候才释放的。

评论区留言点赞板：

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

@薛畅 、@张永志同学给出了正确答案。而且提到了在读提交隔离级别下，

是只有行锁的。

@帆帆帆帆帆帆帆帆、@欧阳成 对上期的例子做了验证，需要说明一下，需

要在启动配置里面增加 performance_schema=on，才能用上这个功能，

performance_schema 库里的表才有数据。

上一篇 19 | 为什么我只查一行的语句，也执行这么慢？

下一篇 21 | 为什么我只改一行的语句，锁这么多？

令狐少侠 置顶

2018-12-28
 10

老师，今天的文章对我影响很大，发现之前掌握的知识有些错误的地方，课后我用你的表
结构根据以前不清楚的地方实践了一遍，现在有两个问题，麻烦您解答下
1.我在事务1中执行 begin;select * from t where c=5 for update;事务未提交，然后事务
2中begin;update t set c=5 where id=0;执行阻塞，替换成update t set c=11 where

精选留言 (104)  写留言

id=0;执行不阻塞，我觉得原因是事务1执行时产生next-key lock范围是(0,5].(5,10]。我…
展开

作者回复: 1. 好问题。你可以理解为要在索引c上插入一个(c=5,id=0)这一行，是落在(0,5],(5,10]

里面的，11可以对吧

2. 嗯，主键索引的间隙上也要有Gap lock保护的

xuery 置顶

2019-01-28


老师之前的留言说错了，重新梳理下：
图8：间隙锁导致的死锁；我把innodb_locks_unsafe_for_binlog设置为1之后，session B
并不会blocked，session A insert会阻塞住，但是不会提示死锁；然后session B提交执行
成功，session A提示主键冲突
 …
展开

作者回复: 对， innodb_locks_unsafe_for_binlog 这个参数就是这个意思 “不加gap lock”，

这个已经要被废弃了（8.0就没有了），所以不建议设置哈，容易造成误会。

如果真的要去掉gap lock，可以考虑改用RC隔离级别+binlog_format=row

AI杜嘉嘉
2018-12-28

 17

说真的，这一系列文章实用性真的很强，老师非常负责，想必牵扯到老师大量精力，希望
老师再出好文章，谢谢您了，辛苦了

展开

作者回复: 精力花了没事，睡一觉醒来还是一条好汉😄

主要还是得大家有收获，我就值了😄

薛畅
2018-12-29

 14

可重复读隔离级别下，经试验：
SELECT * FROM t where c>=15 and c<=20 for update; 会加如下锁：
next-key lock:(10, 15], (15, 20]
gap lock:(20, 25)
 …
展开

作者回复: 是的，这个其实就是为啥总结规则有点麻烦，有时候只是因为代码是这么写的😓

沉浮
2018-12-28

 10

通过打印锁日志帮助理解问题
锁信息见括号里的说明。

TABLE LOCK table `guo_test`.`t` trx id 105275 lock mode IX
RECORD LOCKS space id 31 page no 4 n bits 80 index c of table `guo_test`.`t` trx i…
展开

作者回复: 优秀

郭江伟
2018-12-28

 9

insert into t values(0,0,0),(5,5,5),
(10,10,10),(15,15,15),(20,20,20),(25,25,25);
运行mysql> begin;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from t where c>=15 and c<=20 order by c desc for update; …
展开

作者回复: 感觉你下一篇看起来会很轻松了哈�

慧鑫coming
2018-12-28 

5

这篇需要多读几遍，again

展开

en
2018-12-31

 3

老师您好，我mysql的隔离级别是可重复读，数据是(0,0,0),(5,5,5),(10,10,10),(15,15,15),
(20,20,20),(25,25,25)，使用了begin;select * from t where c>=15 and c<=20 order
by c desc for update;然后sessionB的11阻塞了，但是(6,6,6)的插入成功了这是什么原因
呢？

展开

郭健
2018-12-30

 2

老师，想请教您几个问题。1.在第六章MDL锁的时候，您说给大表增加字段和增加索引的
时候要小心，之前做过测试，给一个一千万的数据增加索引有时需要40分钟，但是增加索
引不会对表增加MDL锁吧。除了增加索引慢，还会对数据库有什么影响吗，我问我们
dba，他说就开始和结束的时候上一下锁，没什么影响，我个人是持怀疑态度的。2，老师
讲到表锁除了MDL锁，还有显示命令lock table的命令的表锁，老师我可以认为，在mys…
展开

作者回复: 1. 在锁方面你们dba说的基本是对的。一开始和结束有写锁，执行中间40分钟只有读锁

但是1000万的表要做40分钟，可能意味着系统压力大（或者配置偏小），这样可能不是没影响

对，比较这个操作还是要吃IO和CPU的

2. 嗯，innodb引擎是这样的。

滔滔
2018-12-29

 2

老师，听了您的课收获满满～～感谢您的付出！您可不可以在分析死锁的时候讲一下如何
分析死锁日志，期待～～😀

展开

作者回复: 谢谢你的肯定。

嗯死锁分析会有一篇专门说。

不过你可以提前说一下碰到的疑问😄

往事随风，...
2018-12-28

 2

总结：for update 是锁住所有行还有间隙锁，但是间隙🔒之间互不冲突，但是互不冲突，
为什么插入9这一行会被间隙锁等待，原来没有这一行，这和查询9这一行不是一样？

简海青
2019-05-04

 1

加锁过程的分析，这篇文章也是很棒的；供同学们参考
http://hedengcheng.com/?p=771

南友力max...
2019-02-27

 1

丁老师，想问下，innodb的行锁是怎么实现的，有单独的数据结构存放哪些数据块记录是
被锁的么？还是在聚簇索引上对该行数据进行锁定标记？或者是其他？

展开

作者回复: 看下08篇哦，

里面有介绍到行锁

还有问题再在那个文章下面发哈

Long
2018-12-31

 1

再发下，留言可能没看到。

老师你好，我这边有个疑问就是，我能找到和留言中 用户名为 沉浮 ，同学一样的日志，
但是怎么就能判断这个是hex 8000000a asc就是(5,10]的gap锁，而不是(10,15]的？是因
为左(]固定格式的原因吗？简单来说3个问题， …
展开

作者回复: 这是好问题。

1. 无符号数第一位是符号位。1表示正数

2. 都是表示(5,10), 参考21讲的最后一个例子

3. 表示接下来要打印字符串值，如果是可打印字符会显示出来

胡月🌈
2018-12-29

 1

老师，今天线上遇上了一个死锁的问题，您能帮我分析下吗。
根据前面文章的理解：死锁产生的原因如下
线程1：update语句where c= 1 然后 update语句where c=2
线程2：update语句where c=2然后 update语句where c=1
如果线程1获取c=1的锁，等待c=2的锁，线程2获取了c=2的锁，等待c=1的锁，就会产…
展开

作者回复: PID是唯一索引吗？ 给一下表结构。这两个语句分别对应的主键ID如果单独查出来分别

是多少

高枕
2018-12-29

 1

林老师，今天我又回头看第四节 深入浅出谈索引（上），里面有这样一段话：为了让一个
查询尽量少地读磁盘，就必须让查询过程访问尽量少的数据块。那么，我们就不应该使用
二叉树，而是要使用“N 叉”树。这里，“N 叉”树中的“N”取决于数据块的大小。
我想问的是，
一 mysql是以page为最小单位的，mysql一次磁盘io能只读一个块吗？还是多个块组成…
展开

信信
2018-12-29

 1

老师你好，如果图1的字段d有索引，按前面说的T1时刻后，只有id等于5这一行加了写
锁。那么session B 操作的是id等于0这一行，应该不会被阻断吧？如果没阻断的话，仍然
会产生语义问题及数据不一致的情况啊。想不明白。。。

展开

作者回复: 如果d有索引，而且写法是d=5，那么其他语句要把其他行的d改成5，也是不行的哦

某、人
2018-12-28

 1

按照我的理解select * from t where c>=15 and c<=20 order by c desc for update;
这条语句的加锁顺序的以及范围应该是[25,20),[20,15],(15,10],但是通过实验得出来多了
(10,5)gap锁
而且不管是用二级索引还是用主键索引,都会加这段gap锁.
有点不太清楚为什么倒序扫描就需要加上了这段gap锁,目的又是为了什么? …
展开

作者回复: 嗯嗯下周一见😄

可凡不凡
2018-12-28

 1

老师
update tab1 set name =(select name from tab2 where status =2)...
tab2.status 上有二级非唯一索引,rr 隔离级别
上述情况
tab2.id 上的的索引会被锁吗? …
展开

作者回复: Tab2满足条件的航上会加读锁

小新
2018-12-28

 1

这篇文章真的需要多啃几遍，

展开

作者回复: 嗯嗯，而且这篇是下篇的基础😄

