
21 | 为什么我只改一行的语句，锁这么多？
2018-12-31 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 17:38 大小 16.16M

在上一篇文章中，我和你介绍了间隙锁和 next-key lock 的概念，但是并没有说明加锁规

则。间隙锁的概念理解起来确实有点儿难，尤其在配合上行锁以后，很容易在判断是否会出

现锁等待的问题上犯错。

所以今天，我们就先从这个加锁规则开始吧。

首先说明一下，这些加锁规则我没在别的地方看到过有类似的总结，以前我自己判断的时候

都是想着代码里面的实现来脑补的。这次为了总结成不看代码的同学也能理解的规则，是我

又重新刷了代码临时总结出来的。所以，这个规则有以下两条前提说明：

1. MySQL 后面的版本可能会改变加锁策略，所以这个规则只限于截止到现在的最新版本，

即 5.x 系列 <=5.7.24，8.0 系列 <=8.0.13。





 下载APP 

2. 如果大家在验证中有发现 bad case 的话，请提出来，我会再补充进这篇文章，使得一起

学习本专栏的所有同学都能受益。

因为间隙锁在可重复读隔离级别下才有效，所以本篇文章接下来的描述，若没有特殊说明，

默认是可重复读隔离级别。

我总结的加锁规则里面，包含了两个“原则”、两个“优化”和一个“bug”。

1. 原则 1：加锁的基本单位是 next-key lock。希望你还记得，next-key lock 是前开后闭

区间。

2. 原则 2：查找过程中访问到的对象才会加锁。

3. 优化 1：索引上的等值查询，给唯一索引加锁的时候，next-key lock 退化为行锁。

4. 优化 2：索引上的等值查询，向右遍历时且最后一个值不满足等值条件的时候，next-

key lock 退化为间隙锁。

5. 一个 bug：唯一索引上的范围查询会访问到不满足条件的第一个值为止。

我还是以上篇文章的表 t 为例，和你解释一下这些规则。表 t 的建表语句和初始化语句如

下。

接下来的例子基本都是配合着图片说明的，所以我建议你可以对照着文稿看，有些例子可能

会“毁三观”，也建议你读完文章后亲手实践一下。

案例一：等值查询间隙锁

第一个例子是关于等值条件操作间隙：

1

2

3

4

5

6

7

8

9

10

CREATE TABLE `t` (
 `id` int(11) NOT NULL,
 `c` int(11) DEFAULT NULL,
 `d` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `c` (`c`)
) ENGINE=InnoDB;

insert into t values(0,0,0),(5,5,5),
(10,10,10),(15,15,15),(20,20,20),(25,25,25);

复制代码

图 1 等值查询的间隙锁

由于表 t 中没有 id=7 的记录，所以用我们上面提到的加锁规则判断一下的话：

1. 根据原则 1，加锁单位是 next-key lock，session A 加锁范围就是 (5,10]；

2. 同时根据优化 2，这是一个等值查询 (id=7)，而 id=10 不满足查询条件，next-key

lock 退化成间隙锁，因此最终加锁的范围是 (5,10)。

所以，session B 要往这个间隙里面插入 id=8 的记录会被锁住，但是 session C 修改

id=10 这行是可以的。

案例二：非唯一索引等值锁

第二个例子是关于覆盖索引上的锁：

图 2 只加在非唯一索引上的锁

看到这个例子，你是不是有一种“该锁的不锁，不该锁的乱锁”的感觉？我们来分析一下

吧。

这里 session A 要给索引 c 上 c=5 的这一行加上读锁。

1. 根据原则 1，加锁单位是 next-key lock，因此会给 (0,5] 加上 next-key lock。

2. 要注意 c 是普通索引，因此仅访问 c=5 这一条记录是不能马上停下来的，需要向右遍

历，查到 c=10 才放弃。根据原则 2，访问到的都要加锁，因此要给 (5,10] 加 next-key

lock。

3. 但是同时这个符合优化 2：等值判断，向右遍历，最后一个值不满足 c=5 这个等值条

件，因此退化成间隙锁 (5,10)。

4. 根据原则 2 ，只有访问到的对象才会加锁，这个查询使用覆盖索引，并不需要访问主键

索引，所以主键索引上没有加任何锁，这就是为什么 session B 的 update 语句可以执

行完成。

但 session C 要插入一个 (7,7,7) 的记录，就会被 session A 的间隙锁 (5,10) 锁住。

需要注意，在这个例子中，lock in share mode 只锁覆盖索引，但是如果是 for update

就不一样了。 执行 for update 时，系统会认为你接下来要更新数据，因此会顺便给主键索

引上满足条件的行加上行锁。

这个例子说明，锁是加在索引上的；同时，它给我们的指导是，如果你要用 lock in share

mode 来给行加读锁避免数据被更新的话，就必须得绕过覆盖索引的优化，在查询字段中

加入索引中不存在的字段。比如，将 session A 的查询语句改成 select d from t where

c=5 lock in share mode。你可以自己验证一下效果。

案例三：主键索引范围锁

第三个例子是关于范围查询的。

举例之前，你可以先思考一下这个问题：对于我们这个表 t，下面这两条查询语句，加锁范

围相同吗？

1

2

mysql> select * from t where id=10 for update;
mysql> select * from t where id>=10 and id<11 for update;

复制代码

你可能会想，id 定义为 int 类型，这两个语句就是等价的吧？其实，它们并不完全等价。

在逻辑上，这两条查语句肯定是等价的，但是它们的加锁规则不太一样。现在，我们就让

session A 执行第二个查询语句，来看看加锁效果。

图 3 主键索引上范围查询的锁

现在我们就用前面提到的加锁规则，来分析一下 session A 会加什么锁呢？

1. 开始执行的时候，要找到第一个 id=10 的行，因此本该是 next-key lock(5,10]。 根据

优化 1， 主键 id 上的等值条件，退化成行锁，只加了 id=10 这一行的行锁。

2. 范围查找就往后继续找，找到 id=15 这一行停下来，因此需要加 next-key

lock(10,15]。

所以，session A 这时候锁的范围就是主键索引上，行锁 id=10 和 next-key

lock(10,15]。这样，session B 和 session C 的结果你就能理解了。

这里你需要注意一点，首次 session A 定位查找 id=10 的行的时候，是当做等值查询来判

断的，而向右扫描到 id=15 的时候，用的是范围查询判断。

案例四：非唯一索引范围锁

接下来，我们再看两个范围查询加锁的例子，你可以对照着案例三来看。

需要注意的是，与案例三不同的是，案例四中查询语句的 where 部分用的是字段 c。

图 4 非唯一索引范围锁

这次 session A 用字段 c 来判断，加锁规则跟案例三唯一的不同是：在第一次用 c=10 定

位记录的时候，索引 c 上加了 (5,10] 这个 next-key lock 后，由于索引 c 是非唯一索引，

没有优化规则，也就是说不会蜕变为行锁，因此最终 sesion A 加的锁是，索引 c 上的

(5,10] 和 (10,15] 这两个 next-key lock。

所以从结果上来看，sesson B 要插入（8,8,8) 的这个 insert 语句时就被堵住了。

这里需要扫描到 c=15 才停止扫描，是合理的，因为 InnoDB 要扫到 c=15，才知道不需要

继续往后找了。

案例五：唯一索引范围锁 bug

前面的四个案例，我们已经用到了加锁规则中的两个原则和两个优化，接下来再看一个关于

加锁规则中 bug 的案例。

图 5 唯一索引范围锁的 bug

session A 是一个范围查询，按照原则 1 的话，应该是索引 id 上只加 (10,15] 这个 next-

key lock，并且因为 id 是唯一键，所以循环判断到 id=15 这一行就应该停止了。

但是实现上，InnoDB 会往前扫描到第一个不满足条件的行为止，也就是 id=20。而且由于

这是个范围扫描，因此索引 id 上的 (15,20] 这个 next-key lock 也会被锁上。

所以你看到了，session B 要更新 id=20 这一行，是会被锁住的。同样地，session C 要插

入 id=16 的一行，也会被锁住。

照理说，这里锁住 id=20 这一行的行为，其实是没有必要的。因为扫描到 id=15，就可以

确定不用往后再找了。但实现上还是这么做了，因此我认为这是个 bug。

我也曾找社区的专家讨论过，官方 bug 系统上也有提到，但是并未被 verified。所以，认

为这是 bug 这个事儿，也只能算我的一家之言，如果你有其他见解的话，也欢迎你提出

来。

案例六：非唯一索引上存在"等值"的例子

接下来的例子，是为了更好地说明“间隙”这个概念。这里，我给表 t 插入一条新记录。

1 mysql> insert into t values(30,10,30);

复制代码

新插入的这一行 c=10，也就是说现在表里有两个 c=10 的行。那么，这时候索引 c 上的间

隙是什么状态了呢？你要知道，由于非唯一索引上包含主键的值，所以是不可能存在“相

同”的两行的。

图 6 非唯一索引等值的例子

可以看到，虽然有两个 c=10，但是它们的主键值 id 是不同的（分别是 10 和 30），因此

这两个 c=10 的记录之间，也是有间隙的。

图中我画出了索引 c 上的主键 id。为了跟间隙锁的开区间形式进行区别，我用

(c=10,id=30) 这样的形式，来表示索引上的一行。

现在，我们来看一下案例六。

这次我们用 delete 语句来验证。注意，delete 语句加锁的逻辑，其实跟 select ... for

update 是类似的，也就是我在文章开始总结的两个“原则”、两个“优化”和一

个“bug”。

图 7 delete 示例

这时，session A 在遍历的时候，先访问第一个 c=10 的记录。同样地，根据原则 1，这里

加的是 (c=5,id=5) 到 (c=10,id=10) 这个 next-key lock。

然后，session A 向右查找，直到碰到 (c=15,id=15) 这一行，循环才结束。根据优化 2，

这是一个等值查询，向右查找到了不满足条件的行，所以会退化成 (c=10,id=10) 到

(c=15,id=15) 的间隙锁。

也就是说，这个 delete 语句在索引 c 上的加锁范围，就是下图中蓝色区域覆盖的部分。

图 8 delete 加锁效果示例

这个蓝色区域左右两边都是虚线，表示开区间，即 (c=5,id=5) 和 (c=15,id=15) 这两行上

都没有锁。

案例七：limit 语句加锁

例子 6 也有一个对照案例，场景如下所示：

图 9 limit 语句加锁

这个例子里，session A 的 delete 语句加了 limit 2。你知道表 t 里 c=10 的记录其实只有

两条，因此加不加 limit 2，删除的效果都是一样的，但是加锁的效果却不同。可以看到，

session B 的 insert 语句执行通过了，跟案例六的结果不同。

这是因为，案例七里的 delete 语句明确加了 limit 2 的限制，因此在遍历到 (c=10, id=30)

这一行之后，满足条件的语句已经有两条，循环就结束了。

因此，索引 c 上的加锁范围就变成了从（c=5,id=5) 到（c=10,id=30) 这个前开后闭区

间，如下图所示：

图 10 带 limit 2 的加锁效果

可以看到，(c=10,id=30）之后的这个间隙并没有在加锁范围里，因此 insert 语句插入

c=12 是可以执行成功的。

这个例子对我们实践的指导意义就是，在删除数据的时候尽量加 limit。这样不仅可以控制

删除数据的条数，让操作更安全，还可以减小加锁的范围。

案例八：一个死锁的例子

前面的例子中，我们在分析的时候，是按照 next-key lock 的逻辑来分析的，因为这样分析

比较方便。最后我们再看一个案例，目的是说明：next-key lock 实际上是间隙锁和行锁加

起来的结果。

你一定会疑惑，这个概念不是一开始就说了吗？不要着急，我们先来看下面这个例子：

图 11 案例八的操作序列

现在，我们按时间顺序来分析一下为什么是这样的结果。

1. session A 启动事务后执行查询语句加 lock in share mode，在索引 c 上加了 next-key

lock(5,10] 和间隙锁 (10,15)；

2. session B 的 update 语句也要在索引 c 上加 next-key lock(5,10] ，进入锁等待；

3. 然后 session A 要再插入 (8,8,8) 这一行，被 session B 的间隙锁锁住。由于出现了死

锁，InnoDB 让 session B 回滚。

你可能会问，session B 的 next-key lock 不是还没申请成功吗？

其实是这样的，session B 的“加 next-key lock(5,10] ”操作，实际上分成了两步，先是

加 (5,10) 的间隙锁，加锁成功；然后加 c=10 的行锁，这时候才被锁住的。

也就是说，我们在分析加锁规则的时候可以用 next-key lock 来分析。但是要知道，具体执

行的时候，是要分成间隙锁和行锁两段来执行的。

小结

这里我再次说明一下，我们上面的所有案例都是在可重复读隔离级别 (repeatable-read) 下

验证的。同时，可重复读隔离级别遵守两阶段锁协议，所有加锁的资源，都是在事务提交或

者回滚的时候才释放的。

在最后的案例中，你可以清楚地知道 next-key lock 实际上是由间隙锁加行锁实现的。如果

切换到读提交隔离级别 (read-committed) 的话，就好理解了，过程中去掉间隙锁的部

分，也就是只剩下行锁的部分。

其实读提交隔离级别在外键场景下还是有间隙锁，相对比较复杂，我们今天先不展开。

另外，在读提交隔离级别下还有一个优化，即：语句执行过程中加上的行锁，在语句执行完

成后，就要把“不满足条件的行”上的行锁直接释放了，不需要等到事务提交。

也就是说，读提交隔离级别下，锁的范围更小，锁的时间更短，这也是不少业务都默认使用

读提交隔离级别的原因。

不过，我希望你学过今天的课程以后，可以对 next-key lock 的概念有更清晰的认识，并且

会用加锁规则去判断语句的加锁范围。

在业务需要使用可重复读隔离级别的时候，能够更细致地设计操作数据库的语句，解决幻读

问题的同时，最大限度地提升系统并行处理事务的能力。

经过这篇文章的介绍，你再看一下上一篇文章最后的思考题，再来尝试分析一次。

我把题目重新描述和简化一下：还是我们在文章开头初始化的表 t，里面有 6 条记录，图

12 的语句序列中，为什么 session B 的 insert 操作，会被锁住呢？

图 12 锁分析思考题

另外，如果你有兴趣多做一些实验的话，可以设计好语句序列，在执行之前先自己分析一

下，然后实际地验证结果是否跟你的分析一致。

对于那些你自己无法解释的结果，可以发到评论区里，后面我争取挑一些有趣的案例在文章

中分析。

你可以把你关于思考题的分析写在留言区，也可以分享你自己设计的锁验证方案，我会在下

一篇文章的末尾选取有趣的评论跟大家分享。感谢你的收听，也欢迎你把这篇文章分享给更

多的朋友一起阅读。

上期问题时间

上期的问题，我在本期继续作为了课后思考题，所以会在下篇文章再一起公布“答案”。

这里，我展开回答一下评论区几位同学的问题。

@令狐少侠 说，以前一直认为间隙锁只在二级索引上有。现在你知道了，有间隙的地方

就可能有间隙锁。

@浪里白条 同学问，如果是 varchar 类型，加锁规则是什么样的。

回答：实际上在判断间隙的时候，varchar 和 int 是一样的，排好序以后，相邻两个值之

间就有间隙。

有几位同学提到说，上一篇文章自己验证的结果跟案例一不同，就是在 session A 执行

完这两个语句：

复制代码

以后，session B 的 update 和 session C 的 insert 都会被堵住。这是不是跟文章的结论矛

盾？

其实不是的，这个例子用的是反证假设，就是假设不堵住，会出现问题；然后，推导出

session A 需要锁整个表所有的行和所有间隙。

评论区留言点赞板：

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

1

2

begin;
select * from t where d=5 for update; /*Q1*/

@ 某、人 、@郭江伟 两位同学尝试分析了上期问题，并给了有启发性的解

答。

上一篇 20 | 幻读是什么，幻读有什么问题？

下一篇 22 | MySQL有哪些“饮鸩止渴”提高性能的方法？

堕落天使 置顶

2019-01-03
 9

老师，您好。假期的没跟上，今天补到了这节课，看了之后有几点不是太明白。望能解答
一下。
1. 索引c上的锁算不算是行锁。假如索引c上的next-key lock为(0,5] (5,10]，那么5算不算
是c上的行锁？
2. 在案例六中，执行 “delete from t where c=10;” 语句，索引c上的next-key lock…
展开

作者回复: 1. Next-key lock 就是间隙锁➕行锁，所以包含=5这一行

2. 对

3. (c=5,id=50)是在这个gap里哦，你试试插入(1,5,50)对比一下。好问题

张三
2018-12-31

 43

Happy New Year !这个专栏绝对是极客时间最好我买过最值的专栏。

约书亚
2018-12-31

 13

早晨睡不着打开极客时间一看，竟然更新了。今天是周日而且在假期中哎...

作者回复: 风雨无阻 节假日不休，包括元旦和春节😄

undifined
2019-01-07

 7

遇到一个有趣的问题，在老师的解答下终于弄明白了：

CREATE TABLE z (
 id INT PRIMARY KEY AUTO_INCREMENT,
 b INT, …

精选留言 (125)  写留言

展开

作者回复: 好问题，质量很高的笔记

HuaMax
2019-01-01

 5

首先老师新年快乐，学习专栏受益良多！
上期问过老师的问题已了解答案，锁是加在索引上的。再尝试回答问题。c上是普通索引，
根据原则2，访问到的都要加锁，在查询c>=15这个条件时，在查找到15后加锁（10，
15］，继续往右查找，按理说不会锁住6这个索引值，但查询语句中加了order by c
desc，我猜想会优化为使用c<=20这条语句，查找到20后往左查找，这样会访问到15左…
展开

作者回复: 新年好

对的�

郭江伟
2018-12-31

 5

老师这次的留下的问题，语句跟上次不一样，上期问题语句是select id from t where
c>=15 and c<=20 order by c desc for update;；这次缺少了 order by c desc ，不加
desc的话insert into t values(6,6,6);不会被堵塞；
根据优化3：索引上的等值查询，在向右遍历时且最后一个值不满足等值条件的时候next-
key lock退化为间隙锁； …
展开

作者回复: 嗯你说的对

不过是我少打一个词了，加上去了，要desc哦

重新分析下😄

Leon📷 
4

2019-01-29 4

老师，案例八session B的操作语句update t set d = d + 1 where c =10; 由于c是非唯一
键索引，锁（5，10」可以理解
，为什么不锁(10,15} 呢，不是应该继续向后扫描直到第一个不满足条件的值为止吗

展开

作者回复: 好问题，新年快乐

会锁的，只是因为在(5,10]就被锁住了，所以后面的锁加不上去了😆

Geek_9ca34...
2019-01-09

 4

老师，你好：
我练习实例的时候发现一个问题：如 案例五：唯一索引范围锁 bug
begin;
select * from t where id>10 and id<=15 for update;
1、执行如上语句加锁范围(10,15]和(15,20]； …
展开

作者回复: 好问题，我会加到答疑文章中，

Gap是一个动态的概念

乾坤
2019-01-01

 4

您好，关于"优化 2：索引上的等值查询，向右遍历时且最后一个值不满足等值条件的时
候，next-key lock 退化为间隙锁。"，我觉得改为"从第一个满足等值条件的索引记录开始
向右遍历到第一个不满足等值条件记录，并将第一个不满足等值条件记录上的next-key
lock 退化为间隙锁"更明确些

展开

作者回复: 感觉没大差别，嗯嗯，理解就好😄

往事随风，...  3

2019-01-01

这和分两步有什么关系？
(5,10]已经是被锁住，分不分两步来加锁，这个间隙和行锁都被锁住了，session b应该是
拿不到锁才对。

展开

Geek_maxwe...
2019-04-14

 2

老师有个疑问，就是既然repeat read已经解决了幻读（利用next key lock)，那下一个事
务级别（序列化）主要是解决什么问题呢？ 因为原本我以为repeat read 其实没有解决幻
读

null
2019-04-13

 2

@唯她命 的问题，案例一为啥是间隙锁，而不是行锁？

我自己的理解：因为 id=7 的记录不存在，没有上锁的实体，所以无法使用优化 1。

优化 1 是说索引上的等值查询，如果是唯一索引，且记录存在，就退化成行锁。 …
展开

木子
2019-05-14

 1

老师，你好，回头看第二遍的时候，突然发现一个地方没明白：在案例1中 id=7等值查询
时，id是主键，也满足唯一索引，为什么没有根据优化1 next-key lock 退化为行锁而是加
了（5,10）的间隙锁？而案例三中 主键索引范围锁案例中 第一步 找到id=10的记录 这时
候是根据优化2 主键索引上的等值查询 退化为行锁？同样是主键索引的等值查询为什么一
个加了间隙锁一个退化成了行锁？麻烦老师看到之后回复一下，非常感谢

展开

null
2019-04-14

 1

@坠落天使 的问题，案例六的 session A 不变，session B insert (c=5, id=50) 的记录被
block，可以借用“线段”的概念来帮助理解，下面是我自己的理解：
session A 我们只关注 a (c=5, id=5) 和 b (c=10, id=10) 这两个点 (为了方便说明，其他
的锁我们选择忽略)。

在平面上，a 和 b两点连成的线段，就是我们的加锁范围。 …
展开

唯她命
2019-03-23

 1

老师，唯一索引的等值查询 退换成 行锁，案例一的等值查询为啥是间隙锁？？

Barnett
2019-03-10

 1

老师，您好，关于精选留言中堕落天使的第三个问题，next-key lock是(5,10],(10,10],
(10,15)，您的回答是(c=5,id=50)也是在这个gap里的。但是5不是开区间的吗？

作者回复: (5,10]是个简写

其实就是左边界是 （c=5,id=5) , 右边界是(c=10, id=10)，

左开右闭

这样你再看下这个结论😆

时隐时现
2019-01-30

 1

不好意思，这次又来晚了，看这种连载技术文章，和看小说一样，养肥了集中看~~
这次的问题如下，希望丁老师有空解答一下。
版本：mysql 5.6.39
CREATE TABLE `t` (
 `a` int(11) NOT NULL, …
展开

作者回复:

好问题，在read-commited隔离级别下，update语句

有一个“semi-consistent” read优化，

意思是，如果update语句碰到一个已经被锁了的行，会读入最新的版本，然后判断一下是不是满

足查询条件，

a)如果不满足，就直接跳过；

b) 如果满足，才进入锁等待

你的第二个问题：这个策略，只对update有效，delete无效

新春快乐~

happy涛
2019-01-23

 1

老师：同上一个问题。 还是案例2. select id from t where c=6 for update;
ID为[0,9)都不可以添加，包括-1都可以。为啥会锁这么多。而c锁的是[5,10),大于等于5，
小于10

作者回复: select id from t where c=6 for update;

这个在c上的锁是（5，10）这个间隙

堕落天使
2019-01-04

 1

堕落天使：
老师，您好。假期的没跟上，今天补到了这节课，看了之后有几点不是太明白。望能解答
一下。
1. 索引c上的锁算不算是行锁。假如索引c上的next-key lock为(0,5] (5,10]，那么5算不算
是c上的行锁？ …
展开

作者回复: 我觉得案例6、7就是讲到了哦，普通索引是带着主键值的；

应该说(c=5,id=50)所在的间隙是 (c=5,id=5)到(c=10,id=10)

你可以像案例5那样自己画个索引图

往事随风，...
2019-01-01

 1

session A
mysql> select * from t where c>=15 and c<=20 order by c desc lock in share
mode;
+----+------+------+
| id | c | d | …
展开

作者回复: Explain结果发一下，还有show variables 结果也发下

