
24 | MySQL是怎么保证主备一致的？
2019-01-07 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 19:48 大小 18.15M

在前面的文章中，我不止一次地和你提到了 binlog，大家知道 binlog 可以用来归档，也

可以用来做主备同步，但它的内容是什么样的呢？为什么备库执行了 binlog 就可以跟主库

保持一致了呢？今天我就正式地和你介绍一下它。

毫不夸张地说，MySQL 能够成为现下最流行的开源数据库，binlog 功不可没。

在最开始，MySQL 是以容易学习和方便的高可用架构，被开发人员青睐的。而它的几乎所

有的高可用架构，都直接依赖于 binlog。虽然这些高可用架构已经呈现出越来越复杂的趋

势，但都是从最基本的一主一备演化过来的。

今天这篇文章我主要为你介绍主备的基本原理。理解了背后的设计原理，你也可以从业务开

发的角度，来借鉴这些设计思想。





 下载APP 

MySQL 主备的基本原理

如图 1 所示就是基本的主备切换流程。

图 1 MySQL 主备切换流程

在状态 1 中，客户端的读写都直接访问节点 A，而节点 B 是 A 的备库，只是将 A 的更新都

同步过来，到本地执行。这样可以保持节点 B 和 A 的数据是相同的。

当需要切换的时候，就切成状态 2。这时候客户端读写访问的都是节点 B，而节点 A 是 B

的备库。

在状态 1 中，虽然节点 B 没有被直接访问，但是我依然建议你把节点 B（也就是备库）设

置成只读（readonly）模式。这样做，有以下几个考虑：

1. 有时候一些运营类的查询语句会被放到备库上去查，设置为只读可以防止误操作；

2. 防止切换逻辑有 bug，比如切换过程中出现双写，造成主备不一致；

3. 可以用 readonly 状态，来判断节点的角色。

你可能会问，我把备库设置成只读了，还怎么跟主库保持同步更新呢？

这个问题，你不用担心。因为 readonly 设置对超级 (super) 权限用户是无效的，而用于同

步更新的线程，就拥有超级权限。

接下来，我们再看看节点 A 到 B 这条线的内部流程是什么样的。图 2 中画出的就是一个

update 语句在节点 A 执行，然后同步到节点 B 的完整流程图。

图 2 主备流程图

图 2 中，包含了我在上一篇文章中讲到的 binlog 和 redo log 的写入机制相关的内容，可

以看到：主库接收到客户端的更新请求后，执行内部事务的更新逻辑，同时写 binlog。

备库 B 跟主库 A 之间维持了一个长连接。主库 A 内部有一个线程，专门用于服务备库 B

的这个长连接。一个事务日志同步的完整过程是这样的：

1. 在备库 B 上通过 change master 命令，设置主库 A 的 IP、端口、用户名、密码，以及

要从哪个位置开始请求 binlog，这个位置包含文件名和日志偏移量。

2. 在备库 B 上执行 start slave 命令，这时候备库会启动两个线程，就是图中的 io_thread

和 sql_thread。其中 io_thread 负责与主库建立连接。

3. 主库 A 校验完用户名、密码后，开始按照备库 B 传过来的位置，从本地读取 binlog，

发给 B。

4. 备库 B 拿到 binlog 后，写到本地文件，称为中转日志（relay log）。

5. sql_thread 读取中转日志，解析出日志里的命令，并执行。

这里需要说明，后来由于多线程复制方案的引入，sql_thread 演化成为了多个线程，跟我

们今天要介绍的原理没有直接关系，暂且不展开。

分析完了这个长连接的逻辑，我们再来看一个问题：binlog 里面到底是什么内容，为什么

备库拿过去可以直接执行。

binlog 的三种格式对比

我在第 15 篇答疑文章中，和你提到过 binlog 有两种格式，一种是 statement，一种是

row。可能你在其他资料上还会看到有第三种格式，叫作 mixed，其实它就是前两种格式

的混合。

为了便于描述 binlog 的这三种格式间的区别，我创建了一个表，并初始化几行数据。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

mysql> CREATE TABLE `t` (
 `id` int(11) NOT NULL,
 `a` int(11) DEFAULT NULL,
 `t_modified` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 KEY `a` (`a`),
 KEY `t_modified`(`t_modified`)
) ENGINE=InnoDB;

insert into t values(1,1,'2018-11-13');
insert into t values(2,2,'2018-11-12');
insert into t values(3,3,'2018-11-11');
insert into t values(4,4,'2018-11-10');
insert into t values(5,5,'2018-11-09');

复制代码

https://time.geekbang.org/column/article/73161

如果要在表中删除一行数据的话，我们来看看这个 delete 语句的 binlog 是怎么记录的。

注意，下面这个语句包含注释，如果你用 MySQL 客户端来做这个实验的话，要记得加 -c

参数，否则客户端会自动去掉注释。

当 binlog_format=statement 时，binlog 里面记录的就是 SQL 语句的原文。你可以用

命令看 binlog 中的内容。

图 3 statement 格式 binlog 示例

现在，我们来看一下图 3 的输出结果。

1 mysql> delete from t /*comment*/ where a>=4 and t_modified<='2018-11-10' limit 1;

复制代码

1 mysql> show binlog events in 'master.000001';

复制代码

第一行 SET @@SESSION.GTID_NEXT='ANONYMOUS’你可以先忽略，后面文章我

们会在介绍主备切换的时候再提到；

第二行是一个 BEGIN，跟第四行的 commit 对应，表示中间是一个事务；

第三行就是真实执行的语句了。可以看到，在真实执行的 delete 命令之前，还有一

个“use ‘test’”命令。这条命令不是我们主动执行的，而是 MySQL 根据当前要操作

的表所在的数据库，自行添加的。这样做可以保证日志传到备库去执行的时候，不论当前

的工作线程在哪个库里，都能够正确地更新到 test 库的表 t。

use 'test’命令之后的 delete 语句，就是我们输入的 SQL 原文了。可以看到，

binlog“忠实”地记录了 SQL 命令，甚至连注释也一并记录了。

为了说明 statement 和 row 格式的区别，我们来看一下这条 delete 命令的执行效果图：

图 4 delete 执行 warnings

可以看到，运行这条 delete 命令产生了一个 warning，原因是当前 binlog 设置的是

statement 格式，并且语句中有 limit，所以这个命令可能是 unsafe 的。

为什么这么说呢？这是因为 delete 带 limit，很可能会出现主备数据不一致的情况。比如上

面这个例子：

1. 如果 delete 语句使用的是索引 a，那么会根据索引 a 找到第一个满足条件的行，也就是

说删除的是 a=4 这一行；

2. 但如果使用的是索引 t_modified，那么删除的就是 t_modified='2018-11-09’也就是

a=5 这一行。

由于 statement 格式下，记录到 binlog 里的是语句原文，因此可能会出现这样一种情

况：在主库执行这条 SQL 语句的时候，用的是索引 a；而在备库执行这条 SQL 语句的时

候，却使用了索引 t_modified。因此，MySQL 认为这样写是有风险的。

那么，如果我把 binlog 的格式改为 binlog_format=‘row’， 是不是就没有这个问题了

呢？我们先来看看这时候 binog 中的内容吧。

最后一行是一个 COMMIT。你可以看到里面写着 xid=61。你还记得这个 XID 是做什么

用的吗？如果记忆模糊了，可以再回顾一下第 15 篇文章中的相关内容。

https://time.geekbang.org/column/article/73161

图 5 row 格式 binlog 示例

可以看到，与 statement 格式的 binlog 相比，前后的 BEGIN 和 COMMIT 是一样的。但

是，row 格式的 binlog 里没有了 SQL 语句的原文，而是替换成了两个 event：

Table_map 和 Delete_rows。

1. Table_map event，用于说明接下来要操作的表是 test 库的表 t;

2. Delete_rows event，用于定义删除的行为。

其实，我们通过图 5 是看不到详细信息的，还需要借助 mysqlbinlog 工具，用下面这个命

令解析和查看 binlog 中的内容。因为图 5 中的信息显示，这个事务的 binlog 是从 8900

这个位置开始的，所以可以用 start-position 参数来指定从这个位置的日志开始解析。

图 6 row 格式 binlog 示例的详细信息

1 mysqlbinlog -vv data/master.000001 --start-position=8900;

复制代码

从这个图中，我们可以看到以下几个信息：

你可以看到，当 binlog_format 使用 row 格式的时候，binlog 里面记录了真实删除行的

主键 id，这样 binlog 传到备库去的时候，就肯定会删除 id=4 的行，不会有主备删除不同

行的问题。

为什么会有 mixed 格式的 binlog？

基于上面的信息，我们来讨论一个问题：为什么会有 mixed 这种 binlog 格式的存在场

景？推论过程是这样的：

server id 1，表示这个事务是在 server_id=1 的这个库上执行的。

每个 event 都有 CRC32 的值，这是因为我把参数 binlog_checksum 设置成了

CRC32。

Table_map event 跟在图 5 中看到的相同，显示了接下来要打开的表，map 到数字

226。现在我们这条 SQL 语句只操作了一张表，如果要操作多张表呢？每个表都有一个

对应的 Table_map event、都会 map 到一个单独的数字，用于区分对不同表的操作。

我们在 mysqlbinlog 的命令中，使用了 -vv 参数是为了把内容都解析出来，所以从结果

里面可以看到各个字段的值（比如，@1=4、 @2=4 这些值）。

binlog_row_image 的默认配置是 FULL，因此 Delete_event 里面，包含了删掉的行的

所有字段的值。如果把 binlog_row_image 设置为 MINIMAL，则只会记录必要的信

息，在这个例子里，就是只会记录 id=4 这个信息。

最后的 Xid event，用于表示事务被正确地提交了。

因为有些 statement 格式的 binlog 可能会导致主备不一致，所以要使用 row 格式。

但 row 格式的缺点是，很占空间。比如你用一个 delete 语句删掉 10 万行数据，用

statement 的话就是一个 SQL 语句被记录到 binlog 中，占用几十个字节的空间。但如

果用 row 格式的 binlog，就要把这 10 万条记录都写到 binlog 中。这样做，不仅会占

用更大的空间，同时写 binlog 也要耗费 IO 资源，影响执行速度。

所以，MySQL 就取了个折中方案，也就是有了 mixed 格式的 binlog。mixed 格式的意

思是，MySQL 自己会判断这条 SQL 语句是否可能引起主备不一致，如果有可能，就用

row 格式，否则就用 statement 格式。

也就是说，mixed 格式可以利用 statment 格式的优点，同时又避免了数据不一致的风

险。

因此，如果你的线上 MySQL 设置的 binlog 格式是 statement 的话，那基本上就可以认

为这是一个不合理的设置。你至少应该把 binlog 的格式设置为 mixed。

比如我们这个例子，设置为 mixed 后，就会记录为 row 格式；而如果执行的语句去掉

limit 1，就会记录为 statement 格式。

当然我要说的是，现在越来越多的场景要求把 MySQL 的 binlog 格式设置成 row。这么做

的理由有很多，我来给你举一个可以直接看出来的好处：恢复数据。

接下来，我们就分别从 delete、insert 和 update 这三种 SQL 语句的角度，来看看数据恢

复的问题。

通过图 6 你可以看出来，即使我执行的是 delete 语句，row 格式的 binlog 也会把被删掉

的行的整行信息保存起来。所以，如果你在执行完一条 delete 语句以后，发现删错数据

了，可以直接把 binlog 中记录的 delete 语句转成 insert，把被错删的数据插入回去就可

以恢复了。

如果你是执行错了 insert 语句呢？那就更直接了。row 格式下，insert 语句的 binlog 里会

记录所有的字段信息，这些信息可以用来精确定位刚刚被插入的那一行。这时，你直接把

insert 语句转成 delete 语句，删除掉这被误插入的一行数据就可以了。

如果执行的是 update 语句的话，binlog 里面会记录修改前整行的数据和修改后的整行数

据。所以，如果你误执行了 update 语句的话，只需要把这个 event 前后的两行信息对调

一下，再去数据库里面执行，就能恢复这个更新操作了。

其实，由 delete、insert 或者 update 语句导致的数据操作错误，需要恢复到操作之前状

态的情况，也时有发生。MariaDB 的Flashback工具就是基于上面介绍的原理来回滚数据

的。

虽然 mixed 格式的 binlog 现在已经用得不多了，但这里我还是要再借用一下 mixed 格式

来说明一个问题，来看一下这条 SQL 语句：

https://mariadb.com/kb/en/library/flashback/

如果我们把 binlog 格式设置为 mixed，你觉得 MySQL 会把它记录为 row 格式还是

statement 格式呢？

先不要着急说结果，我们一起来看一下这条语句执行的效果。

图 7 mixed 格式和 now()

可以看到，MySQL 用的居然是 statement 格式。你一定会奇怪，如果这个 binlog 过了 1

分钟才传给备库的话，那主备的数据不就不一致了吗？

接下来，我们再用 mysqlbinlog 工具来看看：

图 8 TIMESTAMP 命令

从图中的结果可以看到，原来 binlog 在记录 event 的时候，多记了一条命令：SET

TIMESTAMP=1546103491。它用 SET TIMESTAMP 命令约定了接下来的 now() 函数的

返回时间。

因此，不论这个 binlog 是 1 分钟之后被备库执行，还是 3 天后用来恢复这个库的备份，

这个 insert 语句插入的行，值都是固定的。也就是说，通过这条 SET TIMESTAMP 命令，

MySQL 就确保了主备数据的一致性。

我之前看过有人在重放 binlog 数据的时候，是这么做的：用 mysqlbinlog 解析出日志，

然后把里面的 statement 语句直接拷贝出来执行。

1 mysql> insert into t values(10,10, now());
复制代码

你现在知道了，这个方法是有风险的。因为有些语句的执行结果是依赖于上下文命令的，直

接执行的结果很可能是错误的。

所以，用 binlog 来恢复数据的标准做法是，用 mysqlbinlog 工具解析出来，然后把解析

结果整个发给 MySQL 执行。类似下面的命令：

这个命令的意思是，将 master.000001 文件里面从第 2738 字节到第 2973 字节中间这段

内容解析出来，放到 MySQL 去执行。

循环复制问题

通过上面对 MySQL 中 binlog 基本内容的理解，你现在可以知道，binlog 的特性确保了

在备库执行相同的 binlog，可以得到与主库相同的状态。

因此，我们可以认为正常情况下主备的数据是一致的。也就是说，图 1 中 A、B 两个节点

的内容是一致的。其实，图 1 中我画的是 M-S 结构，但实际生产上使用比较多的是双 M

结构，也就是图 9 所示的主备切换流程。

1 mysqlbinlog master.000001 --start-position=2738 --stop-position=2973 | mysql -h127.0.0

复制代码

图 9 MySQL 主备切换流程 -- 双 M 结构

对比图 9 和图 1，你可以发现，双 M 结构和 M-S 结构，其实区别只是多了一条线，即：

节点 A 和 B 之间总是互为主备关系。这样在切换的时候就不用再修改主备关系。

但是，双 M 结构还有一个问题需要解决。

业务逻辑在节点 A 上更新了一条语句，然后再把生成的 binlog 发给节点 B，节点 B 执行

完这条更新语句后也会生成 binlog。（我建议你把参数 log_slave_updates 设置为 on，

表示备库执行 relay log 后生成 binlog）。

那么，如果节点 A 同时是节点 B 的备库，相当于又把节点 B 新生成的 binlog 拿过来执行

了一次，然后节点 A 和 B 间，会不断地循环执行这个更新语句，也就是循环复制了。这个

要怎么解决呢？

从上面的图 6 中可以看到，MySQL 在 binlog 中记录了这个命令第一次执行时所在实例的

server id。因此，我们可以用下面的逻辑，来解决两个节点间的循环复制的问题：

1. 规定两个库的 server id 必须不同，如果相同，则它们之间不能设定为主备关系；

2. 一个备库接到 binlog 并在重放的过程中，生成与原 binlog 的 server id 相同的新的

binlog；

3. 每个库在收到从自己的主库发过来的日志后，先判断 server id，如果跟自己的相同，表

示这个日志是自己生成的，就直接丢弃这个日志。

按照这个逻辑，如果我们设置了双 M 结构，日志的执行流就会变成这样：

1. 从节点 A 更新的事务，binlog 里面记的都是 A 的 server id；

2. 传到节点 B 执行一次以后，节点 B 生成的 binlog 的 server id 也是 A 的 server id；

3. 再传回给节点 A，A 判断到这个 server id 与自己的相同，就不会再处理这个日志。所

以，死循环在这里就断掉了。

小结

今天这篇文章，我给你介绍了 MySQL binlog 的格式和一些基本机制，是后面我要介绍的

读写分离等系列文章的背景知识，希望你可以认真消化理解。

binlog 在 MySQL 的各种高可用方案上扮演了重要角色。今天介绍的可以说是所有

MySQL 高可用方案的基础。在这之上演化出了诸如多节点、半同步、MySQL group

replication 等相对复杂的方案。

我也跟你介绍了 MySQL 不同格式 binlog 的优缺点，和设计者的思考。希望你在做系统开

发时候，也能借鉴这些设计思想。

最后，我给你留下一个思考题吧。

说到循环复制问题的时候，我们说 MySQL 通过判断 server id 的方式，断掉死循环。但

是，这个机制其实并不完备，在某些场景下，还是有可能出现死循环。

你能构造出一个这样的场景吗？又应该怎么解决呢？

你可以把你的设计和分析写在评论区，我会在下一篇文章跟你讨论这个问题。感谢你的收

听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期我留给你的问题是，你在什么时候会把线上生产库设置成“非双 1”。我目前知道的场

景，有以下这些：

1. 业务高峰期。一般如果有预知的高峰期，DBA 会有预案，把主库设置成“非双 1”。

2. 备库延迟，为了让备库尽快赶上主库。@永恒记忆和 @Second Sight 提到了这个场

景。

3. 用备份恢复主库的副本，应用 binlog 的过程，这个跟上一种场景类似。

4. 批量导入数据的时候。

一般情况下，把生产库改成“非双 1”配置，是设置

innodb_flush_logs_at_trx_commit=2、sync_binlog=1000。

评论区留言点赞板：

@way 同学提到了一个有趣的现象，由于从库设置了

binlog_group_commit_sync_delay 和

binlog_group_commit_sync_no_delay_count 导致一直延迟的情况。我们

在主库设置这两个参数，是为了减少 binlog 的写盘压力。备库这么设置，尤

其在“快要追上”的时候，就反而会受这两个参数的拖累。一般追主备就

用“非双 1”（追上记得改回来）。

@一大只 同学验证了在 sync_binlog=0 的情况下，设置 sync_delay 和

sync_no_delay_count 的现象，点赞这种发现边界的意识和手动验证的好习

惯。是这样的：sync_delay 和 sync_no_delay_count 的逻辑先走，因此该

等还是会等。等到满足了这两个条件之一，就进入 sync_binlog 阶段。这时

候如果判断 sync_binlog=0，就直接跳过，还是不调 fsync。

@锅子 同学提到，设置 sync_binlog=0 的时候，还是可以看到 binlog 文件

马上做了修改。这个是对的，我们说“写到了 page cache”，就是文件系统

的 page cache。而你用 ls 命令看到的就是文件系统返回的结果。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 23 | MySQL是怎么保证数据不丢的？

下一篇 25 | MySQL是怎么保证高可用的？

Leon📷 置顶

2019-01-25
 4

老师，我想问下双M架构下，主从复制，是不是一方判断自己的数据比对方少就从对方复
制，判断依据是什么

作者回复: 好问题。

一开始创建主备关系的时候， 是由备库指定的。

比如基于位点的主备关系，备库说“我要从binlog文件A的位置P”开始同步， 主库就从这个指定

的位置开始往后发。

而主备复制关系搭建完成以后，是主库来决定“要发数据给备库”的。

精选留言 (44)  写留言

所以主库有生成新的日志，就会发给备库。

Sinyo 置顶

2019-01-21
 3

主库 A 从本地读取 binlog，发给从库 B；
老师，请问这里的本地是指文件系统的 page cache还是disk呢？

展开

作者回复: 好问题，

是这样的，对于A的线程来说，就是“读文件”，

1. 如果这个文件现在还在 page cache中，那就最好了，直接读走；

2. 如果不在page cache里，就只好去磁盘读

这个行为是文件系统控制的，MySQL只是执行“读文件”这个操作

观弈道人
2019-01-07

 8

老师你好，问个备份问题，假如周日23点做了备份，周二20点需要恢复数据，那么在用
binlog恢复时，如何恰好定位到周日23点的binlog,谢谢。

展开

作者回复: Mysqlbinlog有个参数—stop-datetime

HuaMax
2019-01-07

 4

课后题。如果在同步的过程中修改了server id，那用原server id 生成的log被两个M认为
都不是自己的而被循环执行，不知这种情况会不会发生

展开

作者回复: 是的，会

hua168
2019-01-08

 3

大神，我前些天去面试，面试官问了一题:
mysql做主从，一段时间后发现从库在高峰期会发生一两条条数据丢失（不记得是查询行
空白还是查询不到了），主从正常，怎么判断？
1.我问他是不是所以从库都是一样，他说不一样
2.我说低峰期重做新的从库观察，查看日志有没有报错？他好像不满意这个答案。 …
展开

作者回复: 运维现在要求也挺高的

第一个问题其实我也没看懂，“高峰期丢数据”是指主备延迟查不到数据，还是真的丢了，得先

问清楚下

不过你回答的第二点不太好，低峰期重做这个大家都知道要这么做，而且只是修复动作，没办法

用来定位原因，面试官是要问你分析问题的方法（方向错误）

重搭从库错误日志里面什么都没有的（这个比较可惜，暴露了对字节不够了解，一般不了解的方

法在面试的时候是不如不说的）

第二个问题三点都是你回答的吗？那还算回答得可以的，但是不能只讲名词，要找个你熟悉细节

的方案展开一下

三方向也是对的

我估计就是第一个问题减分比较厉害

堕落天使
2019-01-07

 3

老师，您好，问一个关于change buffer的问题。
对于insert语句来说，change buffer的优化主要在非唯一的二级索引上，因为主键是唯一
索引，插入必须要判断是否存在。
那么对于update语句呢？如下（假设c有非唯一索引，id是主键，d没有索引）：
update t set d=2 where c=10; …
展开

作者回复: 修改的行要读入内存呀

写binlog只需要主键索引上的值

你这个语句的话，如果字段c d上都有索引，那么c用不上chsnge buffer,

D可能可以同上

D.L
2019-03-26

 2

老师您好，我这里有个问题想问一下。在主库宕机后，还没同步到从库的binlog在从库上
是看不到的，这种问题是如何解决的？

展开

linqw
2019-02-17

 1

写下学习完这篇的总结和理解，老师有空帮忙看下哦
1、简单主备，一主多备，主进行更新操作，将生成binlog文件发送给备，但是比较好奇一
点的是所有备向主拿binlog文件的时候，主都是一个线程进行将binlog文件依次发送给备
么？两个库互为主备可以将一个负责数据的写入，生成binlog文件，另一个作为数据的同
步，将其改变的binlog同步到自身，然后其他备再从其同步binlog，多master可以做到…
展开

作者回复: 2. 流式发送，一个事务提交就会发

3. “回滚段也是先记录到内存，再记录在磁盘么？” 是的。 undolog(disk)不需要到

data(disk)，undo log的作用看一下08篇

5. “update时，需要记录更新前后的数据，那这样的话，chage buffer不是用不上了么” --- 不

是的，binlog里面的内容用的是主键索引上的，主键索引确实用不上change buffer，但是普通索

引可以

风二中
2019-01-12

 1

在主库执行这条 SQL 语句的时候，用的是索引 a；而在备库执行这条 SQL 语句的时候，
却使用了索引 t_modified
老师，您好，这里索引选择不一样，是因为前面提到的mysql 会选错索引吗？这种情况应

该发生比较少吧，这里应该都会选择索引a吧，还是说这里只是一个事例，还有更复杂的情
况

展开

作者回复: 对，只是一个举例的

夜空中最亮...
2019-01-08

 1

级联复制，3个数据库，首尾相连，应会出现死循环

展开

作者回复: 不会哦，1给2，2给3，3给1，1就放弃了

不过引入第三个节点的思路是对的哈😄

changshan
2019-01-07

 1

老师好，mixed是row和statement的优点整合折中方案，这应该是好多系统设计理念吧？
那么问题一：mixed既然能判断是什么时候使用row，什么时候使用statement，那么为什
么好多推荐都是使用row而且不是使用mixed呢？是因为mixed这种模式下的自动选择转换
不准确可能会出现主从问题吗？问题二：当使用mixed模式情况下，mysql内部是怎么判断
的呢？比如有limit语句就会选择记录row格式，有now()函数还是同样会记录statement…
展开

作者回复: 1. 就是我们文中后面说的那些原因，要用这些binlog的内容去做别的事情😄

2. 对，固定模式下的。好问题，我去拉不下最新版本代码看下规则

一大只😴
2019-01-07

 1

死循环第二种情况：
双主，log_slave_updates=on，binlog_format=statement
配置文件里写成statement格式，然后两个master都重启
(从row格式改成statement试了几次没有成功,因为binlog中记录格式还是row)

测试： …
展开

作者回复: 赞

柚子
2019-01-07

 1

大佬您好，文中说现在越来越多的使用row方式的binlog，那么只能选择接受写入慢和占
用空间大的弊端么？

作者回复: 是的，当然还有minimal可选，会好些😄

会学学不会
2019-05-17



老师您好，请问文中提出的解决两个节点间的循环复制的优化逻辑，就是判断binlog的
server id是不是自己的，这个是MySQL本身就已经集成优化了，还是需要运维人员去优
化？

展开

A_Jinxs
2019-05-17



老师，请教个问题，简单主从架构中，主库delete清空一张表，百万级别，为什么从库会
有很大的延迟？

northpolar
2019-04-29



做实验，需要的几个准备工作
查看binlog_format:
show session variables like 'binlog_format';
修改日志格式：
set session binlog_format=statement; …

展开

三木禾
2019-03-31



老师，双M可能会造成数据不一致的情况么? 比如，A B同时更新同一条数据？

作者回复: 一般说双M是只AB之间设置为互为主备，不过任何时刻只有一个节点在接受更新的

运斤成风
2019-03-18



老师好，双M的主从结构，binlog设置为row，主库上是不是保存了两份相同的日志数
据？binlog和relay log？还是主库判断是自己生成的日志后就丢掉？谢谢

展开

作者回复: relaylog 是应用后就丢弃了的，binlog才会保存着

小美
2019-03-10



不错

展开

Joker
2019-03-06



老师您好，读到您关于binlog的文章之后，我有个疑问。
我之前理解是，mysql 每执行一条事务所产生的binlog准备写到 binlog file时，都会先判
断当前文件写入这条binlog之后是否会超过设置的max_binlog_size值。 如果超过，则
rotate 自动生成下个binlog flie 来记录这条binlog信息。
那如果 事务所有产生的binlog 大于 max_binlog_size 值呢？ 那不是永久地rotate吗？…
展开

作者回复: 好问题

一个事务的binlog日志不会被拆到两个binlog文件，所以会等到这个事务的日志写完再rotate，

所以你会看见超过配置大小上限的binlog 文件

