
25 | MySQL是怎么保证高可用的？
2019-01-09 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 17:23 大小 15.92M

在上一篇文章中，我和你介绍了 binlog 的基本内容，在一个主备关系中，每个备库接收主

库的 binlog 并执行。

正常情况下，只要主库执行更新生成的所有 binlog，都可以传到备库并被正确地执行，备

库就能达到跟主库一致的状态，这就是最终一致性。

但是，MySQL 要提供高可用能力，只有最终一致性是不够的。为什么这么说呢？今天我就

着重和你分析一下。

这里，我再放一次上一篇文章中讲到的双 M 结构的主备切换流程图。





 下载APP 

图 1 MySQL 主备切换流程 -- 双 M 结构

主备延迟

主备切换可能是一个主动运维动作，比如软件升级、主库所在机器按计划下线等，也可能是

被动操作，比如主库所在机器掉电。

接下来，我们先一起看看主动切换的场景。

在介绍主动切换流程的详细步骤之前，我要先跟你说明一个概念，即“同步延迟”。与数据

同步有关的时间点主要包括以下三个：

1. 主库 A 执行完成一个事务，写入 binlog，我们把这个时刻记为 T1;

2. 之后传给备库 B，我们把备库 B 接收完这个 binlog 的时刻记为 T2;

3. 备库 B 执行完成这个事务，我们把这个时刻记为 T3。

所谓主备延迟，就是同一个事务，在备库执行完成的时间和主库执行完成的时间之间的差

值，也就是 T3-T1。

你可以在备库上执行 show slave status 命令，它的返回结果里面会显示

seconds_behind_master，用于表示当前备库延迟了多少秒。

seconds_behind_master 的计算方法是这样的：

1. 每个事务的 binlog 里面都有一个时间字段，用于记录主库上写入的时间；

2. 备库取出当前正在执行的事务的时间字段的值，计算它与当前系统时间的差值，得到

seconds_behind_master。

可以看到，其实 seconds_behind_master 这个参数计算的就是 T3-T1。所以，我们可以

用 seconds_behind_master 来作为主备延迟的值，这个值的时间精度是秒。

你可能会问，如果主备库机器的系统时间设置不一致，会不会导致主备延迟的值不准？

其实不会的。因为，备库连接到主库的时候，会通过执行 SELECT UNIX_TIMESTAMP() 函

数来获得当前主库的系统时间。如果这时候发现主库的系统时间与自己不一致，备库在执行

seconds_behind_master 计算的时候会自动扣掉这个差值。

需要说明的是，在网络正常的时候，日志从主库传给备库所需的时间是很短的，即 T2-T1

的值是非常小的。也就是说，网络正常情况下，主备延迟的主要来源是备库接收完 binlog

和执行完这个事务之间的时间差。

所以说，主备延迟最直接的表现是，备库消费中转日志（relay log）的速度，比主库生产

binlog 的速度要慢。接下来，我就和你一起分析下，这可能是由哪些原因导致的。

主备延迟的来源

首先，有些部署条件下，备库所在机器的性能要比主库所在的机器性能差。

一般情况下，有人这么部署时的想法是，反正备库没有请求，所以可以用差一点儿的机器。

或者，他们会把 20 个主库放在 4 台机器上，而把备库集中在一台机器上。

其实我们都知道，更新请求对 IOPS 的压力，在主库和备库上是无差别的。所以，做这种部

署时，一般都会将备库设置为“非双 1”的模式。

但实际上，更新过程中也会触发大量的读操作。所以，当备库主机上的多个备库都在争抢资

源的时候，就可能会导致主备延迟了。

当然，这种部署现在比较少了。因为主备可能发生切换，备库随时可能变成主库，所以主备

库选用相同规格的机器，并且做对称部署，是现在比较常见的情况。

追问 1：但是，做了对称部署以后，还可能会有延迟。这是为什么呢？

这就是第二种常见的可能了，即备库的压力大。一般的想法是，主库既然提供了写能力，那

么备库可以提供一些读能力。或者一些运营后台需要的分析语句，不能影响正常业务，所以

只能在备库上跑。

我真就见过不少这样的情况。由于主库直接影响业务，大家使用起来会比较克制，反而忽视

了备库的压力控制。结果就是，备库上的查询耗费了大量的 CPU 资源，影响了同步速度，

造成主备延迟。

这种情况，我们一般可以这么处理：

1. 一主多从。除了备库外，可以多接几个从库，让这些从库来分担读的压力。

2. 通过 binlog 输出到外部系统，比如 Hadoop 这类系统，让外部系统提供统计类查询的

能力。

其中，一主多从的方式大都会被采用。因为作为数据库系统，还必须保证有定期全量备份的

能力。而从库，就很适合用来做备份。

追问 2：采用了一主多从，保证备库的压力不会超过主库，还有什么情况可能导致主备延迟

吗？

备注：这里需要说明一下，从库和备库在概念上其实差不多。在我们这个专

栏里，为了方便描述，我把会在 HA 过程中被选成新主库的，称为备库，其

他的称为从库。

这就是第三种可能了，即大事务。

大事务这种情况很好理解。因为主库上必须等事务执行完成才会写入 binlog，再传给备

库。所以，如果一个主库上的语句执行 10 分钟，那这个事务很可能就会导致从库延迟 10

分钟。

不知道你所在公司的 DBA 有没有跟你这么说过：不要一次性地用 delete 语句删除太多数

据。其实，这就是一个典型的大事务场景。

比如，一些归档类的数据，平时没有注意删除历史数据，等到空间快满了，业务开发人员要

一次性地删掉大量历史数据。同时，又因为要避免在高峰期操作会影响业务（至少有这个意

识还是很不错的），所以会在晚上执行这些大量数据的删除操作。

结果，负责的 DBA 同学半夜就会收到延迟报警。然后，DBA 团队就要求你后续再删除数

据的时候，要控制每个事务删除的数据量，分成多次删除。

另一种典型的大事务场景，就是大表 DDL。这个场景，我在前面的文章中介绍过。处理方

案就是，计划内的 DDL，建议使用 gh-ost 方案（这里，你可以再回顾下第 13 篇文章《为

什么表数据删掉一半，表文件大小不变？》中的相关内容）。

追问 3：如果主库上也不做大事务了，还有什么原因会导致主备延迟吗？

造成主备延迟还有一个大方向的原因，就是备库的并行复制能力。这个话题，我会留在下一

篇文章再和你详细介绍。

其实还是有不少其他情况会导致主备延迟，如果你还碰到过其他场景，欢迎你在评论区给我

留言，我来和你一起分析、讨论。

由于主备延迟的存在，所以在主备切换的时候，就相应的有不同的策略。

可靠性优先策略

在图 1 的双 M 结构下，从状态 1 到状态 2 切换的详细过程是这样的：

1. 判断备库 B 现在的 seconds_behind_master，如果小于某个值（比如 5 秒）继续下一

步，否则持续重试这一步；

https://time.geekbang.org/column/article/72388

2. 把主库 A 改成只读状态，即把 readonly 设置为 true；

3. 判断备库 B 的 seconds_behind_master 的值，直到这个值变成 0 为止；

4. 把备库 B 改成可读写状态，也就是把 readonly 设置为 false；

5. 把业务请求切到备库 B。

这个切换流程，一般是由专门的 HA 系统来完成的，我们暂时称之为可靠性优先流程。

图 2 MySQL 可靠性优先主备切换流程

备注：图中的 SBM，是 seconds_behind_master 参数的简写。

可以看到，这个切换流程中是有不可用时间的。因为在步骤 2 之后，主库 A 和备库 B 都处

于 readonly 状态，也就是说这时系统处于不可写状态，直到步骤 5 完成后才能恢复。

在这个不可用状态中，比较耗费时间的是步骤 3，可能需要耗费好几秒的时间。这也是为什

么需要在步骤 1 先做判断，确保 seconds_behind_master 的值足够小。

试想如果一开始主备延迟就长达 30 分钟，而不先做判断直接切换的话，系统的不可用时间

就会长达 30 分钟，这种情况一般业务都是不可接受的。

当然，系统的不可用时间，是由这个数据可靠性优先的策略决定的。你也可以选择可用性优

先的策略，来把这个不可用时间几乎降为 0。

可用性优先策略

如果我强行把步骤 4、5 调整到最开始执行，也就是说不等主备数据同步，直接把连接切到

备库 B，并且让备库 B 可以读写，那么系统几乎就没有不可用时间了。

我们把这个切换流程，暂时称作可用性优先流程。这个切换流程的代价，就是可能出现数据

不一致的情况。

接下来，我就和你分享一个可用性优先流程产生数据不一致的例子。假设有一个表 t：

这个表定义了一个自增主键 id，初始化数据后，主库和备库上都是 3 行数据。接下来，业

务人员要继续在表 t 上执行两条插入语句的命令，依次是：

假设，现在主库上其他的数据表有大量的更新，导致主备延迟达到 5 秒。在插入一条 c=4

的语句后，发起了主备切换。

1

2

3

4

5

6

7

mysql> CREATE TABLE `t` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `c` int(11) unsigned DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

insert into t(c) values(1),(2),(3);

复制代码

1

2

insert into t(c) values(4);
insert into t(c) values(5);

复制代码

图 3 是可用性优先策略，且 binlog_format=mixed时的切换流程和数据结果。

图 3 可用性优先策略，且 binlog_format=mixed

现在，我们一起分析下这个切换流程：

1. 步骤 2 中，主库 A 执行完 insert 语句，插入了一行数据（4,4），之后开始进行主备切

换。

2. 步骤 3 中，由于主备之间有 5 秒的延迟，所以备库 B 还没来得及应用“插入 c=4”这个

中转日志，就开始接收客户端“插入 c=5”的命令。

3. 步骤 4 中，备库 B 插入了一行数据（4,5），并且把这个 binlog 发给主库 A。

4. 步骤 5 中，备库 B 执行“插入 c=4”这个中转日志，插入了一行数据（5,4）。而直接

在备库 B 执行的“插入 c=5”这个语句，传到主库 A，就插入了一行新数据（5,5）。

最后的结果就是，主库 A 和备库 B 上出现了两行不一致的数据。可以看到，这个数据不一

致，是由可用性优先流程导致的。

那么，如果我还是用可用性优先策略，但设置 binlog_format=row，情况又会怎样呢？

因为 row 格式在记录 binlog 的时候，会记录新插入的行的所有字段值，所以最后只会有

一行不一致。而且，两边的主备同步的应用线程会报错 duplicate key error 并停止。也就

是说，这种情况下，备库 B 的 (5,4) 和主库 A 的 (5,5) 这两行数据，都不会被对方执行。

图 4 中我画出了详细过程，你可以自己再分析一下。

图 4 可用性优先策略，且 binlog_format=row

从上面的分析中，你可以看到一些结论：

1. 使用 row 格式的 binlog 时，数据不一致的问题更容易被发现。而使用 mixed 或者

statement 格式的 binlog 时，数据很可能悄悄地就不一致了。如果你过了很久才发现数

据不一致的问题，很可能这时的数据不一致已经不可查，或者连带造成了更多的数据逻

辑不一致。

2. 主备切换的可用性优先策略会导致数据不一致。因此，大多数情况下，我都建议你使用

可靠性优先策略。毕竟对数据服务来说的话，数据的可靠性一般还是要优于可用性的。

但事无绝对，有没有哪种情况数据的可用性优先级更高呢？

答案是，有的。

我曾经碰到过这样的一个场景：

这时候，你可能就需要选择先强行切换，事后再补数据的策略。

当然，事后复盘的时候，我们想到了一个改进措施就是，让业务逻辑不要依赖于这类日志的

写入。也就是说，日志写入这个逻辑模块应该可以降级，比如写到本地文件，或者写到另外

一个临时库里面。

这样的话，这种场景就又可以使用可靠性优先策略了。

接下来我们再看看，按照可靠性优先的思路，异常切换会是什么效果？

假设，主库 A 和备库 B 间的主备延迟是 30 分钟，这时候主库 A 掉电了，HA 系统要切换

B 作为主库。我们在主动切换的时候，可以等到主备延迟小于 5 秒的时候再启动切换，但

这时候已经别无选择了。

有一个库的作用是记录操作日志。这时候，如果数据不一致可以通过 binlog 来修补，而

这个短暂的不一致也不会引发业务问题。

同时，业务系统依赖于这个日志写入逻辑，如果这个库不可写，会导致线上的业务操作无

法执行。

图 5 可靠性优先策略，主库不可用

采用可靠性优先策略的话，你就必须得等到备库 B 的 seconds_behind_master=0 之后，

才能切换。但现在的情况比刚刚更严重，并不是系统只读、不可写的问题了，而是系统处于

完全不可用的状态。因为，主库 A 掉电后，我们的连接还没有切到备库 B。

你可能会问，那能不能直接切换到备库 B，但是保持 B 只读呢？

这样也不行。

因为，这段时间内，中转日志还没有应用完成，如果直接发起主备切换，客户端查询看不到

之前执行完成的事务，会认为有“数据丢失”。

虽然随着中转日志的继续应用，这些数据会恢复回来，但是对于一些业务来说，查询到“暂

时丢失数据的状态”也是不能被接受的。

聊到这里你就知道了，在满足数据可靠性的前提下，MySQL 高可用系统的可用性，是依赖

于主备延迟的。延迟的时间越小，在主库故障的时候，服务恢复需要的时间就越短，可用性

就越高。

小结

今天这篇文章，我先和你介绍了 MySQL 高可用系统的基础，就是主备切换逻辑。紧接

着，我又和你讨论了几种会导致主备延迟的情况，以及相应的改进方向。

然后，由于主备延迟的存在，切换策略就有不同的选择。所以，我又和你一起分析了可靠性

优先和可用性优先策略的区别。

在实际的应用中，我更建议使用可靠性优先的策略。毕竟保证数据准确，应该是数据库服务

的底线。在这个基础上，通过减少主备延迟，提升系统的可用性。

最后，我给你留下一个思考题吧。

一般现在的数据库运维系统都有备库延迟监控，其实就是在备库上执行 show slave

status，采集 seconds_behind_master 的值。

假设，现在你看到你维护的一个备库，它的延迟监控的图像类似图 6，是一个 45°斜向上的

线段，你觉得可能是什么原因导致呢？你又会怎么去确认这个原因呢？

图 6 备库延迟

你可以把你的分析写在评论区，我会在下一篇文章的末尾跟你讨论这个问题。感谢你的收

听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期我留给你的问题是，什么情况下双 M 结构会出现循环复制。

一种场景是，在一个主库更新事务后，用命令 set global server_id=x 修改了 server_id。

等日志再传回来的时候，发现 server_id 跟自己的 server_id 不同，就只能执行了。

另一种场景是，有三个节点的时候，如图 7 所示，trx1 是在节点 B 执行的，因此 binlog

上的 server_id 就是 B，binlog 传给节点 A，然后 A 和 A’搭建了双 M 结构，就会出现循

环复制。

图 7 三节点循环复制

这种三节点复制的场景，做数据库迁移的时候会出现。

如果出现了循环复制，可以在 A 或者 A’上，执行如下命令：

这样这个节点收到日志后就不会再执行。过一段时间后，再执行下面的命令把这个值改回

来。

1

2

3

stop slave；
CHANGE MASTER TO IGNORE_SERVER_IDS=(server_id_of_B);
start slave;

复制代码

1 stop slave；

复制代码

评论区留言点赞板：

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

2

3

CHANGE MASTER TO IGNORE_SERVER_IDS=();
start slave;

@一大只、@HuaMax 同学提到了第一个复现方法；

@Jonh 同学提到了 IGNORE_SERVER_IDS 这个解决方法；

@React 提到，如果主备设置不同的步长，备库是不是可以设置为可读写。

我的建议是，只要这个节点设计内就不会有业务直接在上面执行更新，就建

议设置为 readonly。

上一篇 24 | MySQL是怎么保证主备一致的？

下一篇 26 | 备库为什么会延迟好几个小时？

某、人
2019-01-10

 18

遇到过下面几种造成主从延迟的情况:
1.主库DML语句并发大,从库qps高
2.从库服务器配置差或者一台服务器上几台从库(资源竞争激烈,特别是io)
3.主库和从库的参数配置不一样
4.大事务(DDL,我觉得DDL也相当于一个大事务) …
展开

作者回复: 分析的点很准确👍

undifined
2019-01-09

 3

问题答案：
1. 备库在执行复杂查询，导致资源被占用
2. 备库正在执行一个大事务
3. DML 语句执行
 …
展开

作者回复: 1不太准确，明天我会提到哈

23对的

万勇
2019-01-09

 3

主备同步延迟，工作中常遇到几种情况：
1.主库做大量的dml操作，引起延迟
2.主库有个大事务在处理，引起延迟
3.对myisam存储引擎的表做dml操作，从库会有延迟。
4.利用pt工具对主库的大表做字段新增、修改和添加索引等操作，从库会有延迟。

展开

精选留言 (57)  写留言

作者回复: �

你是有故事的😄

梁中华
2019-01-09

 3

我有一个比较极端一点的HA问题，假设主库的binlog刚写成功还未来得及把binlog同步到
从库，主库就掉电了，这时候从库的数据会不完整吗？
第二个问题，原主库重启加入集群后，那条没有传出去的binlog会如何处理？

展开

作者回复: 1.可能会丢

2. 要看重启之后的拓扑结构了，如果还有节点是这个库的从库，还是会拿走的

linqw
2019-02-17

 2

总结下学习完高可用，老师有空帮忙看下
1、主备延迟，就是在同一个事务在备库执行完成的时间和主库执行完成的时间之间的差
值，包括主库事务执行完成时间和将binlog发送给备库，备库事务的执行完成时间的差
值。每个事务的seconds_behind_master延迟时间，每个事务的 binlog 里面都有一个时
间字段，用于记录主库上的写入时间，备库取出当前正在执行的事务的时间字段的值，…
展开

作者回复: 1~4 很好的总结

5. 也是好问题，直接看《28 | 读写分离有哪些坑？》😆

康磊
2019-01-11

 2

老师你好，现在一般采用读写分离，读的是从库，那么主从如果出现延迟的话，读库就读
的不是最新数据，对这种问题有什么好建议吗？

展开

作者回复: 第28篇专门讲这个问题，敬请期待🤝

崔伟协
2019-01-11

 1

发生主从切换的时候，主有的最新数据没同步到从，会出现这种情况吗，出现了会怎么样

作者回复: 异常切换有可能的

要根据你的处理策略了，如果不能丢，有几个可选的

1.不切换（等这个库自己恢复起来）

2. 使用semi-sync策略

3. 启动后业务做数据对账（这个一般用得少，成本高）

cyberty
2019-01-10

 1

请问老师，如果备库连接主库之后，主库的系统时间修改了，备库同步的时候是否会自动
修正？

作者回复: 好问题，不会

John
2019-01-10

 1

循环复制根本原因是binlog中引入了非当前主机的server id，可以通过ignore server ids
过滤，但是一般情况如果出现循环复制，数据的可靠性就值得怀疑了，不管是过滤还是重
新找点都很难保证循环的部分完整执行过，最后都要验证数据的状态，属于特别严重故障
😂

展开

作者回复: 你这个方法好�

数据问题的话，如果是设置的row 格式的binlog还好，因为insert和delete都会报错，会出现循环

的就是update, 然后update都是可重入的

易翔
2019-01-09

 1

常见的都讲了，补充几点我遇到过的。

1,备库做逻辑备份时，有产生MDL锁。然后复制线程刚好被堵塞。。kill掉备份线程，一切
都畅快了。。我遇到过，但是感觉那备份期间产生的非共享锁不是短时间就释放的吗？为
什么堵的时间那么长，感觉像是遇到死锁。大神讲讲其中原因。 …
展开

作者回复: 👍

7号
2019-01-09

 1

老师，生产环境有一张表需要清理，该表大小140G。要保留最近一个月的数据，又不能按
时间直接用detele删（全表扫描），本来想通过清空分区表删，但是分区表又是哈希
的。。有没好的办法呢？

作者回复: 估计下一个月占多少比例，如果比较小就建新表，把数据导过去吧

如果一个月占比高的话，只能一点点删了。

时间字段有索引的话，每个分区按时间过滤出来删除

Sr7vy
2019-01-09

 1

问题1：T3的解释是：备库执行完这个事物。则：Seconds_Behind_Master=T3-T1。如
T1=30min，主执行完成，备没有执行。猜测1：那么Seconds_Behind_Master=30min
吗？猜测2：备执需要先把这个30min的事务执行完后，
Seconds_Behind_Master=30min？
问题2：很多时候是否能把Seconds_Behind_Master当作真正的延迟时间（面试常被…
展开

作者回复: 问题1:

1.备库没收到，还是收到没执行，前者0，后者30

2. 第二问没看懂

问题2:

类似的，主库把日志都发给备库了吗

 JJ
2019-01-09

 1

请问老师，主库断电了，怎么把binlog传给从库同步数据，怎么使的SBM为0主从切换
呢？

作者回复: 等应用完就认为是SBM=0

如果不能接受主库有来不及传的，就使用semi-sync

via
2019-01-09

 1

通过 binlog 输出到外部系统，比如 Hadoop 这类...

文中这个具体是可采用什么工具呢？

作者回复: canal 可以了解下

Sinyo
2019-01-09

 1

老师，在 binlog row模式下，insert 到表中一条记录，这条记录中某个字段不填，该字段
在表中有设置默认值，利用canal解析binlog出来，这个不填的字段会不存在；难道
binlog 只记录有插入的字段数据，表字段的默认数据就不会记录么？mysql版本5.7.22
canal版本1.0.3

展开

作者回复: 不会啊

insert记录的时候肯定都记录的

你的默认值是什么？

柳树
2019-05-14



每个支持集群部署的软件，都需要在一致性和可用性之间寻找平衡，这篇文章描述了
Mysql在这方面做的努力，CAP，P必须满足，剩下的，就是在C和A之间，寻找那个合适
的度。

可可
2019-03-27



老师，我先来讲个笑话
昨天去面试另一家公司，问mysql的问题，问罢之后。
面试官:我看你对mysql了解的还蛮深得，是不是也看了极客时间的。。。～
我: 没有没有(连忙否认，有一种提前看了考试答案的罪恶感😂😂😂)
 …
展开

作者回复: 额。。这个不好说，得看面试官是什么类型的😅

最好的情况是那种，面试官问你的专栏讲到的知识点你都回答了，

然后面试官又把问题延伸了，然后你还顺利回答出来了。

这样就大大方方说学过了， 面试官一定觉得你又好学又勤于思考哟😆

（先预祝一波顺利拿到offer哈）

轻歌赋
2019-03-10



首先，能查到值说明备库还活着
其次，时间是线性函数说明函数起点开始必然有一个事务导致后续事务无法得到执行
猜测要么是大事务锁了很多，要么是ddl锁了整个表
网络应该不会断，因为这个时间是通过备库中对binlog的时间戳判断出来的

展开

gongxt
2019-03-08



老师好，我遇到一种情况：
利用sysbench大批量写入master，接着master故障，然后进行主从切换，从此时回放
binlog事物日志，但是还没有回放完成我就看到了second_behind_master 为0的情况，
这个是啥原因呀？
然后我只能使用另外的判断方式。判断是否已经回放完成，老师看到后还请解惑。

展开

作者回复: 这个比较奇怪诶，不过为了精确判断，还是用gtid或者位点吧

aliang
2019-02-23



老师，我有一个问题：（1）seconds_behind_master的计算方法是通过从库的系统时间
戳减去sql_thead线程正在执行的binlog_event上的时间戳的差值。当从库系统时间不准时
也不会影响seconds的值，因为从库连接到主库时会通过select unix_timestamp（）查询
主库的系统时间，若发现和从库不一致会在计算seconds这个值时作调整（2）我的疑惑是
在主从网络正常时，select unix_timestamp执行的频率和触发条件是怎样的（换句话说…
展开

作者回复: 嗯，取时间这个动作只发生在“主从建立连接”的过程中，

如果已经连着的时候，时间戳改掉，是会不准的

