
34 | 到底可不可以使用join？
2019-01-30 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 16:39 大小 15.25M

在实际生产中，关于 join 语句使用的问题，一般会集中在以下两类：

1. 我们 DBA 不让使用 join，使用 join 有什么问题呢？

2. 如果有两个大小不同的表做 join，应该用哪个表做驱动表呢？

今天这篇文章，我就先跟你说说 join 语句到底是怎么执行的，然后再来回答这两个问题。

为了便于量化分析，我还是创建两个表 t1 和 t2 来和你说明。



1

2

3

CREATE TABLE `t2` (
 `id` int(11) NOT NULL,
 `a` int(11) DEFAULT NULL,

复制代码



 下载APP 

可以看到，这两个表都有一个主键索引 id 和一个索引 a，字段 b 上无索引。存储过程

idata() 往表 t2 里插入了 1000 行数据，在表 t1 里插入的是 100 行数据。

Index Nested-Loop Join

我们来看一下这个语句：

如果直接使用 join 语句，MySQL 优化器可能会选择表 t1 或 t2 作为驱动表，这样会影响

我们分析 SQL 语句的执行过程。所以，为了便于分析执行过程中的性能问题，我改用

straight_join 让 MySQL 使用固定的连接方式执行查询，这样优化器只会按照我们指定的

方式去 join。在这个语句里，t1 是驱动表，t2 是被驱动表。

现在，我们来看一下这条语句的 explain 结果。

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

 `b` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `a` (`a`)
) ENGINE=InnoDB;

drop procedure idata;
delimiter ;;
create procedure idata()
begin
 declare i int;
 set i=1;
 while(i<=1000)do
 insert into t2 values(i, i, i);
 set i=i+1;
 end while;
end;;
delimiter ;
call idata();

create table t1 like t2;
insert into t1 (select * from t2 where id<=100)

1 select * from t1 straight_join t2 on (t1.a=t2.a);

复制代码

图 1 使用索引字段 join 的 explain 结果

可以看到，在这条语句里，被驱动表 t2 的字段 a 上有索引，join 过程用上了这个索引，因

此这个语句的执行流程是这样的：

1. 从表 t1 中读入一行数据 R；

2. 从数据行 R 中，取出 a 字段到表 t2 里去查找；

3. 取出表 t2 中满足条件的行，跟 R 组成一行，作为结果集的一部分；

4. 重复执行步骤 1 到 3，直到表 t1 的末尾循环结束。

这个过程是先遍历表 t1，然后根据从表 t1 中取出的每行数据中的 a 值，去表 t2 中查找满

足条件的记录。在形式上，这个过程就跟我们写程序时的嵌套查询类似，并且可以用上被驱

动表的索引，所以我们称之为“Index Nested-Loop Join”，简称 NLJ。

它对应的流程图如下所示：

图 2 Index Nested-Loop Join 算法的执行流程

在这个流程里：

1. 对驱动表 t1 做了全表扫描，这个过程需要扫描 100 行；

2. 而对于每一行 R，根据 a 字段去表 t2 查找，走的是树搜索过程。由于我们构造的数据都

是一一对应的，因此每次的搜索过程都只扫描一行，也是总共扫描 100 行；

3. 所以，整个执行流程，总扫描行数是 200。

现在我们知道了这个过程，再试着回答一下文章开头的两个问题。

先看第一个问题：能不能使用 join?

假设不使用 join，那我们就只能用单表查询。我们看看上面这条语句的需求，用单表查询

怎么实现。

1. 执行select * from t1，查出表 t1 的所有数据，这里有 100 行；

2. 循环遍历这 100 行数据：

可以看到，在这个查询过程，也是扫描了 200 行，但是总共执行了 101 条语句，比直接

join 多了 100 次交互。除此之外，客户端还要自己拼接 SQL 语句和结果。

显然，这么做还不如直接 join 好。

我们再来看看第二个问题：怎么选择驱动表？

在这个 join 语句执行过程中，驱动表是走全表扫描，而被驱动表是走树搜索。

假设被驱动表的行数是 M。每次在被驱动表查一行数据，要先搜索索引 a，再搜索主键索

引。每次搜索一棵树近似复杂度是以 2 为底的 M 的对数，记为 log M，所以在被驱动表

上查一行的时间复杂度是 2*log M。

假设驱动表的行数是 N，执行过程就要扫描驱动表 N 行，然后对于每一行，到被驱动表上

匹配一次。

因此整个执行过程，近似复杂度是 N + N*2*log M。

显然，N 对扫描行数的影响更大，因此应该让小表来做驱动表。

到这里小结一下，通过上面的分析我们得到了两个结论：

1. 使用 join 语句，性能比强行拆成多个单表执行 SQL 语句的性能要好；

2. 如果使用 join 语句的话，需要让小表做驱动表。

从每一行 R 取出字段 a 的值 $R.a；

执行select * from t2 where a=$R.a；

把返回的结果和 R 构成结果集的一行。

2

2

2

如果你没觉得这个影响有那么“显然”， 可以这么理解：N 扩大 1000 倍的

话，扫描行数就会扩大 1000 倍；而 M 扩大 1000 倍，扫描行数扩大不到

10 倍。

但是，你需要注意，这个结论的前提是“可以使用被驱动表的索引”。

接下来，我们再看看被驱动表用不上索引的情况。

Simple Nested-Loop Join

现在，我们把 SQL 语句改成这样：

由于表 t2 的字段 b 上没有索引，因此再用图 2 的执行流程时，每次到 t2 去匹配的时候，

就要做一次全表扫描。

你可以先设想一下这个问题，继续使用图 2 的算法，是不是可以得到正确的结果呢？如果

只看结果的话，这个算法是正确的，而且这个算法也有一个名字，叫做“Simple Nested-

Loop Join”。

但是，这样算来，这个 SQL 请求就要扫描表 t2 多达 100 次，总共扫描 100*1000=10 万

行。

这还只是两个小表，如果 t1 和 t2 都是 10 万行的表（当然了，这也还是属于小表的范

围），就要扫描 100 亿行，这个算法看上去太“笨重”了。

当然，MySQL 也没有使用这个 Simple Nested-Loop Join 算法，而是使用了另一个叫

作“Block Nested-Loop Join”的算法，简称 BNL。

Block Nested-Loop Join

这时候，被驱动表上没有可用的索引，算法的流程是这样的：

1. 把表 t1 的数据读入线程内存 join_buffer 中，由于我们这个语句中写的是 select *，因

此是把整个表 t1 放入了内存；

1 select * from t1 straight_join t2 on (t1.a=t2.b);

复制代码

2. 扫描表 t2，把表 t2 中的每一行取出来，跟 join_buffer 中的数据做对比，满足 join 条

件的，作为结果集的一部分返回。

这个过程的流程图如下：

图 3 Block Nested-Loop Join 算法的执行流程

对应地，这条 SQL 语句的 explain 结果如下所示：

图 4 不使用索引字段 join 的 explain 结果

可以看到，在这个过程中，对表 t1 和 t2 都做了一次全表扫描，因此总的扫描行数是

1100。由于 join_buffer 是以无序数组的方式组织的，因此对表 t2 中的每一行，都要做

100 次判断，总共需要在内存中做的判断次数是：100*1000=10 万次。

前面我们说过，如果使用 Simple Nested-Loop Join 算法进行查询，扫描行数也是 10 万

行。因此，从时间复杂度上来说，这两个算法是一样的。但是，Block Nested-Loop Join

算法的这 10 万次判断是内存操作，速度上会快很多，性能也更好。

接下来，我们来看一下，在这种情况下，应该选择哪个表做驱动表。

假设小表的行数是 N，大表的行数是 M，那么在这个算法里：

1. 两个表都做一次全表扫描，所以总的扫描行数是 M+N；

2. 内存中的判断次数是 M*N。

可以看到，调换这两个算式中的 M 和 N 没差别，因此这时候选择大表还是小表做驱动表，

执行耗时是一样的。

然后，你可能马上就会问了，这个例子里表 t1 才 100 行，要是表 t1 是一个大表，

join_buffer 放不下怎么办呢？

join_buffer 的大小是由参数 join_buffer_size 设定的，默认值是 256k。如果放不下表 t1

的所有数据话，策略很简单，就是分段放。我把 join_buffer_size 改成 1200，再执行：

执行过程就变成了：

1. 扫描表 t1，顺序读取数据行放入 join_buffer 中，放完第 88 行 join_buffer 满了，继续

第 2 步；

2. 扫描表 t2，把 t2 中的每一行取出来，跟 join_buffer 中的数据做对比，满足 join 条件

的，作为结果集的一部分返回；

3. 清空 join_buffer；

4. 继续扫描表 t1，顺序读取最后的 12 行数据放入 join_buffer 中，继续执行第 2 步。

1 select * from t1 straight_join t2 on (t1.a=t2.b);

复制代码

执行流程图也就变成这样：

图 5 Block Nested-Loop Join -- 两段

图中的步骤 4 和 5，表示清空 join_buffer 再复用。

这个流程才体现出了这个算法名字中“Block”的由来，表示“分块去 join”。

可以看到，这时候由于表 t1 被分成了两次放入 join_buffer 中，导致表 t2 会被扫描两次。

虽然分成两次放入 join_buffer，但是判断等值条件的次数还是不变的，依然是

(88+12)*1000=10 万次。

我们再来看下，在这种情况下驱动表的选择问题。

假设，驱动表的数据行数是 N，需要分 K 段才能完成算法流程，被驱动表的数据行数是

M。

注意，这里的 K 不是常数，N 越大 K 就会越大，因此把 K 表示为λ*N，显然λ的取值范围

是 (0,1)。

所以，在这个算法的执行过程中：

1. 扫描行数是 N+λ*N*M；

2. 内存判断 N*M 次。

显然，内存判断次数是不受选择哪个表作为驱动表影响的。而考虑到扫描行数，在 M 和 N

大小确定的情况下，N 小一些，整个算式的结果会更小。

所以结论是，应该让小表当驱动表。

当然，你会发现，在 N+λ*N*M 这个式子里，λ才是影响扫描行数的关键因素，这个值越小

越好。

刚刚我们说了 N 越大，分段数 K 越大。那么，N 固定的时候，什么参数会影响 K 的大小

呢？（也就是λ的大小）答案是 join_buffer_size。join_buffer_size 越大，一次可以放入的

行越多，分成的段数也就越少，对被驱动表的全表扫描次数就越少。

这就是为什么，你可能会看到一些建议告诉你，如果你的 join 语句很慢，就把

join_buffer_size 改大。

理解了 MySQL 执行 join 的两种算法，现在我们再来试着回答文章开头的两个问题。

第一个问题：能不能使用 join 语句？

1. 如果可以使用 Index Nested-Loop Join 算法，也就是说可以用上被驱动表上的索引，

其实是没问题的；

2. 如果使用 Block Nested-Loop Join 算法，扫描行数就会过多。尤其是在大表上的 join

操作，这样可能要扫描被驱动表很多次，会占用大量的系统资源。所以这种 join 尽量不

要用。

所以你在判断要不要使用 join 语句时，就是看 explain 结果里面，Extra 字段里面有没有

出现“Block Nested Loop”字样。

第二个问题是：如果要使用 join，应该选择大表做驱动表还是选择小表做驱动表？

1. 如果是 Index Nested-Loop Join 算法，应该选择小表做驱动表；

2. 如果是 Block Nested-Loop Join 算法：

所以，这个问题的结论就是，总是应该使用小表做驱动表。

当然了，这里我需要说明下，什么叫作“小表”。

我们前面的例子是没有加条件的。如果我在语句的 where 条件加上 t2.id<=50 这个限定条

件，再来看下这两条语句：

注意，为了让两条语句的被驱动表都用不上索引，所以 join 字段都使用了没有索引的字段

b。

但如果是用第二个语句的话，join_buffer 只需要放入 t2 的前 50 行，显然是更好的。所以

这里，“t2 的前 50 行”是那个相对小的表，也就是“小表”。

我们再来看另外一组例子：

这个例子里，表 t1 和 t2 都是只有 100 行参加 join。但是，这两条语句每次查询放入

join_buffer 中的数据是不一样的：

在 join_buffer_size 足够大的时候，是一样的；

在 join_buffer_size 不够大的时候（这种情况更常见），应该选择小表做驱动表。

1

2

select * from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=50;
select * from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=50;

复制代码

1

2

select t1.b,t2.* from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=100;
select t1.b,t2.* from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=100;

复制代码

这里，我们应该选择表 t1 作为驱动表。也就是说在这个例子里，“只需要一列参与 join 的

表 t1”是那个相对小的表。

所以，更准确地说，在决定哪个表做驱动表的时候，应该是两个表按照各自的条件过滤，过

滤完成之后，计算参与 join 的各个字段的总数据量，数据量小的那个表，就是“小表”，

应该作为驱动表。

小结

今天，我和你介绍了 MySQL 执行 join 语句的两种可能算法，这两种算法是由能否使用被

驱动表的索引决定的。而能否用上被驱动表的索引，对 join 语句的性能影响很大。

通过对 Index Nested-Loop Join 和 Block Nested-Loop Join 两个算法执行过程的分析，

我们也得到了文章开头两个问题的答案：

1. 如果可以使用被驱动表的索引，join 语句还是有其优势的；

2. 不能使用被驱动表的索引，只能使用 Block Nested-Loop Join 算法，这样的语句就尽

量不要使用；

3. 在使用 join 的时候，应该让小表做驱动表。

最后，又到了今天的问题时间。

我们在上文说到，使用 Block Nested-Loop Join 算法，可能会因为 join_buffer 不够大，

需要对被驱动表做多次全表扫描。

我的问题是，如果被驱动表是一个大表，并且是一个冷数据表，除了查询过程中可能会导致

IO 压力大以外，你觉得对这个 MySQL 服务还有什么更严重的影响吗？（这个问题需要结

合上一篇文章的知识点）

表 t1 只查字段 b，因此如果把 t1 放到 join_buffer 中，则 join_buffer 中只需要放入 b

的值；

表 t2 需要查所有的字段，因此如果把表 t2 放到 join_buffer 中的话，就需要放入三个字

段 id、a 和 b。

你可以把你的结论和分析写在留言区，我会在下一篇文章的末尾和你讨论这个问题。感谢你

的收听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我在上一篇文章最后留下的问题是，如果客户端由于压力过大，迟迟不能接收数据，会对服

务端造成什么严重的影响。

这个问题的核心是，造成了“长事务”。

至于长事务的影响，就要结合我们前面文章中提到的锁、MVCC 的知识点了。

评论区留言点赞板：

如果前面的语句有更新，意味着它们在占用着行锁，会导致别的语句更新被锁住；

当然读的事务也有问题，就是会导致 undo log 不能被回收，导致回滚段空间膨胀。

@老杨同志 提到了更新之间会互相等锁的问题。同一个事务，更新之后要尽

快提交，不要做没必要的查询，尤其是不要执行需要返回大量数据的查询；

@长杰 同学提到了 undo 表空间变大，db 服务堵塞，服务端磁盘空间不足

的例子。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 33 | 我查这么多数据，会不会把数据库内存打爆？

下一篇 35 | join语句怎么优化？

没时间了ng... 置顶

2019-01-30
 1

join这种用的多的，看完还是有很大收获的。像之前讲的锁之类，感觉好抽象，老是记不
住，唉。

作者回复: 嗯嗯，因为其实每个同学的只是背景不一样。

这45讲里，每个同学都能从部分文章感觉到有收获，我觉得也很好了😆

不过 锁其实用得也多的。。

我以前负责业务库的时候，被开发同学问最多的问题之一就是，为啥死锁了^_^

精选留言 (68)  写留言

信信
2019-01-30

 21

老师好，回答本期问题：如果驱动表分段，那么被驱动表就被多次读，而被驱动表又是大
表，循环读取的间隔肯定得超1秒，这就会导致上篇文章提到的：“数据页在LRU_old的存
在时间超过1秒，就会移到young区”。最终结果就是把大部分热点数据都淘汰了，导
致“Buffer pool hit rate”命中率极低，其他请求需要读磁盘，因此系统响应变慢，大部
分请求阻塞。

展开

作者回复: 👍

抽离の�

2019-01-30
 10

早上听老师一节课感觉获益匪浅

展开

作者回复: 好早呀🤝

老杨同志
2019-01-30

 8

对被驱动表进行全表扫描，会把冷数据的page加入到buffer pool.,并且block nested-
loop要扫描多次，两次扫描的时间可能会超过1秒，使lru的那个优化失效，把热点数据从
buffer pool中淘汰掉，影响正常业务的查询效率

展开

作者回复: 漂亮👍

斜面镜子 ...
2019-01-31

 7

因为 join_buffer 不够大，需要对被驱动表做多次全表扫描，也就造成了“长事务”。除了
老师上节课提到的导致undo log 不能被回收，导致回滚段空间膨胀问题，还会出现：1. 长
期占用DML锁，引发DDL拿不到锁堵慢连接池； 2. SQL执行socket_timeout超时后业务
接口重复发起，导致实例IO负载上升出现雪崩；3. 实例异常后，DBA kill SQL因繁杂的回

滚执行时间过长，不能快速恢复可用；4. 如果业务采用select *作为结果集返回，极大可…
展开

作者回复: 👍很赞

之前知识点的也都加进来啦

萤火虫
2019-01-30

 5

年底了有一种想跳槽的冲动 身在武汉的我想出去看看 可一想到自身的能力和学历 又不敢
去了 苦恼...

作者回复: 今年这情况还是要先克制一下^_^

先把内功练起来😆

Zzz
2019-01-30

 4

林老师，我没想清楚为什么会进入young区域。假设大表t大小是M页>old区域N页，由于
Block Nested-Loop Join需要对t进行k次全表扫描。第一次扫描时，1~N页依次被放入
old区域，访问N+1页时淘汰1页，放入N+1页，以此类推，第一次扫描结束后old区域存
放的是M-N+1~M页。第二次扫描开始，访问1页，淘汰M-N+1页，放入1页。可以把M
页想象成一个环，N页想象成在这个环上滑动的窗口，由于M>N，不管是哪次扫描，需…
展开

作者回复: 你说得对，分两类情况，

小于bp 3/8的情况会跑到young，

大于3/8的会影响young部分的更新

清风浊酒
2019-01-30

 4

老师您好，left join 和 right join 会固定驱动表吗？

展开

作者回复: 不会强制，但是由于语义的关系，大概率上是按照语句上写的关系去驱动，效率是比较

高的

柚子
2019-01-30

 4

join在热点表操作中，join查询是一次给两张表同时加锁吧，会不会增大锁冲突的几率？
业务中肯定要使用被驱动表的索引，通常我们是先在驱动表查出结果集，然后再通过in被
驱动表索引字段，分两步查询，这样是否比直接join委托点？

展开

作者回复: join也是普通查询，都不需要加锁哦，参考下MVCC那篇；

就是我们文中说的，“分两步查询，先查驱动表，然后查多个in”，如果可以用上被驱动表的索

引，我觉得可以用上Index Nested-Loop Join算法，其实效果是跟拆开写类似的

朝夕心
2019-02-19

 2

文中解释NLJ和BNL时间复杂度相同，都是M*N。但是对于BNL性能好于NLJ的原因只是提
到:"BNL的判断是在内存中操作，速度上会快很多，性能也更好"。请问老师？这句话的言
外之意是: NLJ的判断不是在内存中操作吗？不将数据加载到内存，CPU如何进行判断呢?

展开

作者回复: 这个我在答疑文章中展开哈，其实还是“内存数据是从哪里来的”的问题。

我们这里说的是BNL比Simple nested loop 快哈

泡泡爱dota
2019-01-31

 2

explain select * from t1 straight_join t2 on (t1.a=t2.a) where t1.a < 50;
老师, 这条sql为什么t1.a的索引没有用上, t1还是走全表

展开

作者回复: 如果数据量不够多，并且满足a<50的行，占比比较高的话，优化器有可能会认为“还

要回表，还不如直接扫主键id”

郝攀刚จุ...
2019-01-30

 2

业务逻辑关系，一个SQL中left join7，8个表。这我该怎么优化。每次看到这些脑壳就大！

作者回复: 😓

Explain下，没用用index nested-loop 的全要优化

思考特～
2019-03-03

 1

老师，这边想请教一个困扰很久的问题，用mysql经常会制定这么一个规则，不允许多表
join。从实际情况看，几乎不太可能遵守这个规则，有个交易的业务场景涉及 用户表
300W、订单表 900W、支付表 900W，每次需要查一个用户下面的订单信息可能就有点
慢了，但是还能接受，如果是查询一个团体的订单信息，这个量就非常可观了,查询有时候
根本返回不了结果。根本无法避免多表Join，所以想问问老师，在这种需要多表Join业务…
展开

作者回复: 我的建议就是用好NLJ和BKA算法😆

思考特～
2019-02-19

 1

老师，下面的sql
select * from t1 straight_join t2 on (t1.a=t2.b);
使用BNL进行连接，t1表的记录存放到join buffer中去，t2表是要做全表扫描的，它是将
所有记录取出来，这个记录应该也很大，那么存放到什么地方？

展开

作者回复: 没有存，就是按顺序读一行，然后跟join buffer中对比以后这个内存就复用了，又读下

一行

403
2019-02-09

 1

用那个作为驱动表，mysql会自己优化么？

展开

作者回复: 会的

剃刀吗啡
2019-01-31

 1

我们某个业务使用infobright这种列式存储，字段没用索引。我在想这种引擎在join的时候
是否也会遵守类似的规则？但列式存储并不是按行扫描，所以有点困惑。

展开

作者回复: 是的，只是获取数据的时候，不会去读整行。

但是没有索引就也只能用BNL，可以explain看看

☞

2019-01-30
 1

老师您好：
 您最后那个例子如果关联列是有索引的呢？就是使用Index Nested-Loop Join时，如
何对比相对来说哪个是大表，哪个是小表，是对比两个表通过where条件筛选后的行数，
哪个行数多哪个就是大表了？

展开

作者回复: 对的

700
2019-01-30

 1

老师，您好。看完文章后有如下问题请教：

1）文章内容「可以看到，在这个查询过程，也是扫描了 200 行，但是总共执行了 101 条
语句，比直接 join 多了 100 次交互。除此之外，客户端还要自己拼接 SQL 语句和结
果。」
这个有没有啥方法来仅通过1次交互就将这101条语句发到服务端执行？ …
展开

作者回复: 1. 用 in，但是不建议语句太长

2. 看一下前面我们介绍索引的文章哈

3. 因为是在叶子索引上直接顺序扫描，是一个大致值哈

4. 不是呀，因为表t2是1000行哦

amazon101...
2019-01-30

 1

这个专栏受益匪浅，老师再搞个内核源码专栏：）

展开

undifined
2019-01-30

 1

老师有几个问题：
1. select * 和 select 所有字段会有性能差异吗
2. 我们的业务有很多查询需要 join 很多个表，附带有动态的查询条件，几百万数据的表，
查起来很慢，分多次查询聚合又要费很大功夫，现在的办法是给用到的没有索引的列加索
引，像这种 SQL 该怎么优化呢 …
展开

作者回复: 1. 没有，但是如果业务真的需要，还是建议写“select 所有字段”

2. 下一篇会说哈，“现在的办法是给用到的没有索引的列加索引” 这个方法是可以的

