
36 | 为什么临时表可以重名？
2019-02-04 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 16:04 大小 14.73M

今天是大年三十，在开始我们今天的学习之前，我要先和你道一声春节快乐！

在上一篇文章中，我们在优化 join 查询的时候使用到了临时表。当时，我们是这么用的：

你可能会有疑问，为什么要用临时表呢？直接用普通表是不是也可以呢？



1

2

3

4

create temporary table temp_t like t1;
alter table temp_t add index(b);
insert into temp_t select * from t2 where b>=1 and b<=2000;
select * from t1 join temp_t on (t1.b=temp_t.b);

复制代码



 下载APP 

今天我们就从这个问题说起：临时表有哪些特征，为什么它适合这个场景？

这里，我需要先帮你厘清一个容易误解的问题：有的人可能会认为，临时表就是内存表。但

是，这两个概念可是完全不同的。

弄清楚了内存表和临时表的区别以后，我们再来看看临时表有哪些特征。

临时表的特性

为了便于理解，我们来看下下面这个操作序列：

图 1 临时表特性示例

内存表，指的是使用 Memory 引擎的表，建表语法是 create table …

engine=memory。这种表的数据都保存在内存里，系统重启的时候会被清空，但是表

结构还在。除了这两个特性看上去比较“奇怪”外，从其他的特征上看，它就是一个正常

的表。

而临时表，可以使用各种引擎类型 。如果是使用 InnoDB 引擎或者 MyISAM 引擎的临

时表，写数据的时候是写到磁盘上的。当然，临时表也可以使用 Memory 引擎。

可以看到，临时表在使用上有以下几个特点：

1. 建表语法是 create temporary table …。

2. 一个临时表只能被创建它的 session 访问，对其他线程不可见。所以，图中 session A

创建的临时表 t，对于 session B 就是不可见的。

3. 临时表可以与普通表同名。

4. session A 内有同名的临时表和普通表的时候，show create 语句，以及增删改查语句访

问的是临时表。

5. show tables 命令不显示临时表。

由于临时表只能被创建它的 session 访问，所以在这个 session 结束的时候，会自动删除

临时表。也正是由于这个特性，临时表就特别适合我们文章开头的 join 优化这种场景。为

什么呢？

原因主要包括以下两个方面：

1. 不同 session 的临时表是可以重名的，如果有多个 session 同时执行 join 优化，不需要

担心表名重复导致建表失败的问题。

2. 不需要担心数据删除问题。如果使用普通表，在流程执行过程中客户端发生了异常断

开，或者数据库发生异常重启，还需要专门来清理中间过程中生成的数据表。而临时表

由于会自动回收，所以不需要这个额外的操作。

临时表的应用

由于不用担心线程之间的重名冲突，临时表经常会被用在复杂查询的优化过程中。其中，分

库分表系统的跨库查询就是一个典型的使用场景。

一般分库分表的场景，就是要把一个逻辑上的大表分散到不同的数据库实例上。比如。将一

个大表 ht，按照字段 f，拆分成 1024 个分表，然后分布到 32 个数据库实例上。如下图所

示：

图 2 分库分表简图

一般情况下，这种分库分表系统都有一个中间层 proxy。不过，也有一些方案会让客户端直

接连接数据库，也就是没有 proxy 这一层。

在这个架构中，分区 key 的选择是以“减少跨库和跨表查询”为依据的。如果大部分的语

句都会包含 f 的等值条件，那么就要用 f 做分区键。这样，在 proxy 这一层解析完 SQL 语

句以后，就能确定将这条语句路由到哪个分表做查询。

比如下面这条语句：

1 select v from ht where f=N;

复制代码

这时，我们就可以通过分表规则（比如，N%1024) 来确认需要的数据被放在了哪个分表

上。这种语句只需要访问一个分表，是分库分表方案最欢迎的语句形式了。

但是，如果这个表上还有另外一个索引 k，并且查询语句是这样的：

这时候，由于查询条件里面没有用到分区字段 f，只能到所有的分区中去查找满足条件的所

有行，然后统一做 order by 的操作。这种情况下，有两种比较常用的思路。

第一种思路是，在 proxy 层的进程代码中实现排序。

这种方式的优势是处理速度快，拿到分库的数据以后，直接在内存中参与计算。不过，这个

方案的缺点也比较明显：

1. 需要的开发工作量比较大。我们举例的这条语句还算是比较简单的，如果涉及到复杂的

操作，比如 group by，甚至 join 这样的操作，对中间层的开发能力要求比较高；

2. 对 proxy 端的压力比较大，尤其是很容易出现内存不够用和 CPU 瓶颈的问题。

另一种思路就是，把各个分库拿到的数据，汇总到一个 MySQL 实例的一个表中，然后在

这个汇总实例上做逻辑操作。

比如上面这条语句，执行流程可以类似这样：

1 select v from ht where k >= M order by t_modified desc limit 100;

复制代码

在汇总库上创建一个临时表 temp_ht，表里包含三个字段 v、k、t_modified；

在各个分库上执行

1 select v,k,t_modified from ht_x where k >= M order by t_modified desc limit 100;

复制代码

把分库执行的结果插入到 temp_ht 表中；

得到结果。

这个过程对应的流程图如下所示：

图 3 跨库查询流程示意图

在实践中，我们往往会发现每个分库的计算量都不饱和，所以会直接把临时表 temp_ht 放

到 32 个分库中的某一个上。这时的查询逻辑与图 3 类似，你可以自己再思考一下具体的

流程。

执行

1 select v from temp_ht order by t_modified desc limit 100;

复制代码

为什么临时表可以重名？

你可能会问，不同线程可以创建同名的临时表，这是怎么做到的呢？

接下来，我们就看一下这个问题。

我们在执行

这个语句的时候，MySQL 要给这个 InnoDB 表创建一个 frm 文件保存表结构定义，还要

有地方保存表数据。

这个 frm 文件放在临时文件目录下，文件名的后缀是.frm，前缀是“#sql{进程 id}_{线程

id}_ 序列号”。你可以使用 select @@tmpdir 命令，来显示实例的临时文件目录。

而关于表中数据的存放方式，在不同的 MySQL 版本中有着不同的处理方式：

从文件名的前缀规则，我们可以看到，其实创建一个叫作 t1 的 InnoDB 临时表，MySQL

在存储上认为我们创建的表名跟普通表 t1 是不同的，因此同一个库下面已经有普通表 t1

的情况下，还是可以再创建一个临时表 t1 的。

为了便于后面讨论，我先来举一个例子。

1 create temporary table temp_t(id int primary key)engine=innodb;

复制代码

在 5.6 以及之前的版本里，MySQL 会在临时文件目录下创建一个相同前缀、以.ibd 为后

缀的文件，用来存放数据文件；

而从 5.7 版本开始，MySQL 引入了一个临时文件表空间，专门用来存放临时文件的数

据。因此，我们就不需要再创建 ibd 文件了。

图 4 临时表的表名

这个进程的进程号是 1234，session A 的线程 id 是 4，session B 的线程 id 是 5。所以你

看到了，session A 和 session B 创建的临时表，在磁盘上的文件不会重名。

MySQL 维护数据表，除了物理上要有文件外，内存里面也有一套机制区别不同的表，每个

表都对应一个 table_def_key。

也就是说，session A 和 sessionB 创建的两个临时表 t1，它们的 table_def_key 不同，磁

盘文件名也不同，因此可以并存。

在实现上，每个线程都维护了自己的临时表链表。这样每次 session 内操作表的时候，先

遍历链表，检查是否有这个名字的临时表，如果有就优先操作临时表，如果没有再操作普通

表；在 session 结束的时候，对链表里的每个临时表，执行 “DROP TEMPORARY TABLE

+ 表名”操作。

这时候你会发现，binlog 中也记录了 DROP TEMPORARY TABLE 这条命令。你一定会觉

得奇怪，临时表只在线程内自己可以访问，为什么需要写到 binlog 里面？

这，就需要说到主备复制了。

一个普通表的 table_def_key 的值是由“库名 + 表名”得到的，所以如果你要在同一个

库下创建两个同名的普通表，创建第二个表的过程中就会发现 table_def_key 已经存在

了。

而对于临时表，table_def_key 在“库名 + 表名”基础上，又加入

了“server_id+thread_id”。

临时表和主备复制

既然写 binlog，就意味着备库需要。

你可以设想一下，在主库上执行下面这个语句序列：

如果关于临时表的操作都不记录，那么在备库就只有 create table t_normal 表和 insert

into t_normal select * from temp_t 这两个语句的 binlog 日志，备库在执行到 insert

into t_normal 的时候，就会报错“表 temp_t 不存在”。

你可能会说，如果把 binlog 设置为 row 格式就好了吧？因为 binlog 是 row 格式时，在

记录 insert into t_normal 的 binlog 时，记录的是这个操作的数据，即：write_row

event 里面记录的逻辑是“插入一行数据（1,1)”。

确实是这样。如果当前的 binlog_format=row，那么跟临时表有关的语句，就不会记录到

binlog 里。也就是说，只在 binlog_format=statment/mixed 的时候，binlog 中才会记

录临时表的操作。

这种情况下，创建临时表的语句会传到备库执行，因此备库的同步线程就会创建这个临时

表。主库在线程退出的时候，会自动删除临时表，但是备库同步线程是持续在运行的。所

以，这时候我们就需要在主库上再写一个 DROP TEMPORARY TABLE 传给备库执行。

之前有人问过我一个有趣的问题：MySQL 在记录 binlog 的时候，不论是 create table 还

是 alter table 语句，都是原样记录，甚至于连空格都不变。但是如果执行 drop table

t_normal，系统记录 binlog 就会写成：

1

2

3

4

create table t_normal(id int primary key, c int)engine=innodb;/*Q1*/
create temporary table temp_t like t_normal;/*Q2*/
insert into temp_t values(1,1);/*Q3*/
insert into t_normal select * from temp_t;/*Q4*/

复制代码

1 DROP TABLE `t_normal` /* generated by server */

复制代码

也就是改成了标准的格式。为什么要这么做呢 ？

现在你知道原因了，那就是：drop table 命令是可以一次删除多个表的。比如，在上面的

例子中，设置 binlog_format=row，如果主库上执行 "drop table t_normal, temp_t"这

个命令，那么 binlog 中就只能记录：

因为备库上并没有表 temp_t，将这个命令重写后再传到备库执行，才不会导致备库同步线

程停止。

所以，drop table 命令记录 binlog 的时候，就必须对语句做改写。“/* generated by

server */”说明了这是一个被服务端改写过的命令。

说到主备复制，还有另外一个问题需要解决：主库上不同的线程创建同名的临时表是没关系

的，但是传到备库执行是怎么处理的呢？

现在，我给你举个例子，下面的序列中实例 S 是 M 的备库。

图 5 主备关系中的临时表操作

主库 M 上的两个 session 创建了同名的临时表 t1，这两个 create temporary table t1 语

句都会被传到备库 S 上。

1 DROP TABLE `t_normal` /* generated by server */

复制代码

但是，备库的应用日志线程是共用的，也就是说要在应用线程里面先后执行这个 create 语

句两次。（即使开了多线程复制，也可能被分配到从库的同一个 worker 中执行）。那么，

这会不会导致同步线程报错 ？

显然是不会的，否则临时表就是一个 bug 了。也就是说，备库线程在执行的时候，要把这

两个 t1 表当做两个不同的临时表来处理。这，又是怎么实现的呢？

MySQL 在记录 binlog 的时候，会把主库执行这个语句的线程 id 写到 binlog 中。这样，

在备库的应用线程就能够知道执行每个语句的主库线程 id，并利用这个线程 id 来构造临时

表的 table_def_key：

1. session A 的临时表 t1，在备库的 table_def_key 就是：库名 +t1+“M 的

serverid”+“session A 的 thread_id”;

2. session B 的临时表 t1，在备库的 table_def_key 就是 ：库名 +t1+“M 的

serverid”+“session B 的 thread_id”。

由于 table_def_key 不同，所以这两个表在备库的应用线程里面是不会冲突的。

小结

今天这篇文章，我和你介绍了临时表的用法和特性。

在实际应用中，临时表一般用于处理比较复杂的计算逻辑。由于临时表是每个线程自己可见

的，所以不需要考虑多个线程执行同一个处理逻辑时，临时表的重名问题。在线程退出的时

候，临时表也能自动删除，省去了收尾和异常处理的工作。

在 binlog_format='row’的时候，临时表的操作不记录到 binlog 中，也省去了不少麻

烦，这也可以成为你选择 binlog_format 时的一个考虑因素。

需要注意的是，我们上面说到的这种临时表，是用户自己创建的 ，也可以称为用户临时

表。与它相对应的，就是内部临时表，在第 17 篇文章中我已经和你介绍过。

最后，我给你留下一个思考题吧。

下面的语句序列是创建一个临时表，并将其改名：

https://time.geekbang.org/column/article/73795

图 6 关于临时表改名的思考题

可以看到，我们可以使用 alter table 语法修改临时表的表名，而不能使用 rename 语法。

你知道这是什么原因吗？

你可以把你的分析写在留言区，我会在下一篇文章的末尾和你讨论这个问题。感谢你的收

听，也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期的问题是，对于下面这个三个表的 join 语句，

如果改写成 straight_join，要怎么指定连接顺序，以及怎么给三个表创建索引。

第一原则是要尽量使用 BKA 算法。需要注意的是，使用 BKA 算法的时候，并不是“先计

算两个表 join 的结果，再跟第三个表 join”，而是直接嵌套查询的。

具体实现是：在 t1.c>=X、t2.c>=Y、t3.c>=Z 这三个条件里，选择一个经过过滤以后，

数据最少的那个表，作为第一个驱动表。此时，可能会出现如下两种情况。

第一种情况，如果选出来是表 t1 或者 t3，那剩下的部分就固定了。

1. 如果驱动表是 t1，则连接顺序是 t1->t2->t3，要在被驱动表字段创建上索引，也就是

t2.a 和 t3.b 上创建索引；

2. 如果驱动表是 t3，则连接顺序是 t3->t2->t1，需要在 t2.b 和 t1.a 上创建索引。

1 select * from t1 join t2 on(t1.a=t2.a) join t3 on (t2.b=t3.b) where t1.c>=X and t2.c>=Y

复制代码

同时，我们还需要在第一个驱动表的字段 c 上创建索引。

第二种情况是，如果选出来的第一个驱动表是表 t2 的话，则需要评估另外两个条件的过滤

效果。

总之，整体的思路就是，尽量让每一次参与 join 的驱动表的数据集，越小越好，因为这样

我们的驱动表就会越小。

评论区留言点赞板：

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

@库淘淘 做了实验验证；

@poppy 同学做了很不错的分析；

@dzkk 同学在评论中介绍了 MariaDB 支持的 hash join，大家可以了解一

下；

@老杨同志提了一个好问题，如果语句使用了索引 a，结果还要对 a 排序，

就不用 MRR 优化了，否则回表完还要增加额外的排序过程，得不偿失。

上一篇 35 | join语句怎么优化？

下一篇 37 | 什么时候会使用内部临时表？

辣椒
2019-02-07

 11

老师，不同线程可以使用同名的临时表，这个没有问题。但是如果在程序中，用的是连接
池中的连接来操作的，而这些连接不会释放，和数据库保持长连接。这样使用临时表会有
问题吗?。

作者回复: 会，“临时表会自动回收”这个功能，主要用于“应用程序异常断开、MySQL异常重

启”后，不需要主动去删除表。

而平时正常使用的时候，用完删除，还是应该有的好习惯。😆

好问题，新年快乐~

老杨同志
2019-02-04

 3

新年快乐，老师好勤奋！
有个问题，insert into select语句好像会给select的表加锁，如果没有索引，就锁全表，是
不是这样？什么时候可以大胆的用这类语句？

作者回复: 新年好！

“insert into select语句好像会给select的表加锁，如果没有索引，就锁全表”，是的。

这类最好不要很大胆😆，如果不是业务急需的，从源表导出来再写到目标表也是好的。

 后面第40篇会说到哈。

Ryoma  2

精选留言 (22)  写留言

2019-02-14

贴一下官方文档中的说明：To rename TEMPORARY tables, RENAME TABLE does not
work. Use ALTER TABLE instead.
全文见：https://dev.mysql.com/doc/refman/8.0/en/rename-table.html

展开

One day
2019-02-11

 2

错过得还是得补上，新得一年，新的开始，加油

展开

作者回复: 新年快乐，加油💪

亮
2019-02-04

 2

老师过年好呀，祝您猪年大吉，财源广进；老师咱们这个课结束后，再开一期好不好啊，
没学够啊，这是我的新年愿望哦

展开

作者回复: 新年快乐，共同进步😄

鸠翱
2019-02-12

 1

放假结束该补课了😅

评论区有个回答说到了连接池的问题问到会不会有问题……而老师您回答的是会有问题 可
是临时表在session结束后不就删除了嘛 那么即使是用同一个线程又有什么问题呢？

展开

作者回复: 是这样的，要看连接池怎么实现。

如果A客户端在执行过程中创建了临时表，用完了连接就放回池子里面，没有做别的清理工作，然

后新的客户端B复用这个连接，就可能会看到A的临时表

undifined
2019-02-11

 1

老师 有几个问题
1. 在 session 结束的时候会执行 DROP TEMPORARY TABLE，如果数据库掉电，这个临
时表什么时候会被清除
2. 如果binlog 中记录了临时表的操作，因为 session 不同，在从库中访问不到，这样做的
意义是什么 …
展开

作者回复: 1. 好问题，重启以后MySQL会扫描临时目录，把表都删掉；

2. 就是我们文中说的，如果binlog是statement的时候，也需要同步到备库去，否则备库上执行

一个

insert into t_normal (select * from t_temp) 就会报错了

亮
2019-02-04

 1

老师您好，在25课里面的置顶留言“6.表上无主键的情况(主库利用索引更改数据,备库回放
只能用全表扫描,这种情况可以调整slave_rows_search_algorithms参数适当优化下)”
为啥会存在无主键的表呢，就算dba没创建主键，Innodb可以用rowid给自动建一个虚拟
主键呀，这样不就是所有的表都有主键了吗？

展开

作者回复: 用户没有显示指定主键的话，InnoDB引擎会自己创建一个隐藏的主键，但是这个主键

对Server层是透明的，优化器用不上。

新年快乐~

尘封
2019-02-04

 1

新年快乐

展开

作者回复: 新年快乐🤝

llx
2019-05-08



查询需要session，所以同步到备库其实是查询不到的，只是备份用

砖瓦工
2019-04-11



一点一点刷新着我对mysql的认识，真心谢谢老师！期待老师有更加多的课程！祝福老
师！

作者回复: 🤝 加油

唯她命
2019-04-10



老师 为什么过滤了条件之后，选择了t1或者t3,剩下的就固定了呢？选择了t2就需要重新评
估t1和t3呢？不明白

土门一哥
2019-04-06



又要去学习分库分表了，学老师的一节课程从来都不止学一节课……

作者回复: 😆加油

天王
2019-02-26



临时表建表语法create temporary table ，和普通的表不一样，和内存表也不一样。内存
表数据保存到内存里，重启会丢失，临时表会写入到磁盘。临时表只对自己的session中可
见，session结束后自动删除表结构和表数据。适用场景是分库分表，查询到的数据在临时

表中做聚合。临时表可以重名，实际的存储文件名有线程id，在内存中表的命名有
table_ref_key，是由库名加表名加serverid+线程id组成。bin log设置为row模式，临时…
展开

作者回复: 👍

夜空中最亮...
2019-02-13



过年的时候课程落下了，给老师拜个年。

展开

作者回复: 新年快乐

☞

2019-02-11


老师新年好：
 请问老师一下我做的实验，主从情况下，binlog为row模式的时候，退出线程从主库
的binlog中关于临时表只找到了DROP /*!40005 TEMPORARY */ TABLE IF EXISTS
`temp_t`，没有找到create相关的信息，从库是怎么应用这部分create的呢，而且关于
drop操作那里也提到了从库没有这个临时表，是不是有所冲突啊

展开

作者回复: 正常create 语句也会记录的。

还有，因为drop 语句里面因为有TEMPORARY，所以拿到备库执行，即使备库没这个临时表，也

没关系。

慕塔
2019-02-04



打卡 新年快乐😲😲😲

展开

作者回复: 新年快乐、共同进步🤝

好勤奋呀😆

cheriston
2019-02-04



老师辛苦了，大年三十还给我们分享技术，老师新年好🎉.

作者回复: 同祝新年好，共同进步😄

长杰
2019-02-04



老师，新年快乐，万事如意！

展开

作者回复: 新春快乐～

杰
2019-02-04



丁大大新春快乐

展开

作者回复: 新年快乐 工作顺利~

