
37 | 什么时候会使用内部临时表？
2019-02-06 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 13:51 大小 12.70M

今天是大年初二，在开始我们今天的学习之前，我要先和你道一声春节快乐！

在第 16和第 34篇文章中，我分别和你介绍了 sort buffer、内存临时表和 join buffer。这

三个数据结构都是用来存放语句执行过程中的中间数据，以辅助 SQL 语句的执行的。其

中，我们在排序的时候用到了 sort buffer，在使用 join 语句的时候用到了 join buffer。

然后，你可能会有这样的疑问，MySQL 什么时候会使用内部临时表呢？

今天这篇文章，我就先给你举两个需要用到内部临时表的例子，来看看内部临时表是怎么工

作的。然后，我们再来分析，什么情况下会使用内部临时表。

union 执行流程





 下载APP 

https://time.geekbang.org/column/article/73479
https://time.geekbang.org/column/article/79700


为了便于量化分析，我用下面的表 t1 来举例。

然后，我们执行下面这条语句：

这条语句用到了 union，它的语义是，取这两个子查询结果的并集。并集的意思就是这两

个集合加起来，重复的行只保留一行。

下图是这个语句的 explain 结果。

图 1 union 语句 explain 结果

可以看到：

1

2

3

4

5

6

7

8

9

10

11

12

13

14

create table t1(id int primary key, a int, b int, index(a));
delimiter ;;
create procedure idata()
begin
  declare i int;
 
  set i=1;
  while(i<=1000)do
    insert into t1 values(i, i, i);
    set i=i+1;
  end while;
end;;
delimiter ;
call idata();

复制代码

1 (select 1000 as f) union (select id from t1 order by id desc limit 2);

复制代码



这个语句的执行流程是这样的：

1. 创建一个内存临时表，这个临时表只有一个整型字段 f，并且 f 是主键字段。

2. 执行第一个子查询，得到 1000 这个值，并存入临时表中。

3. 执行第二个子查询：

4. 从临时表中按行取出数据，返回结果，并删除临时表，结果中包含两行数据分别是 1000

和 999。

这个过程的流程图如下所示：

第二行的 key=PRIMARY，说明第二个子句用到了索引 id。

第三行的 Extra 字段，表示在对子查询的结果集做 union 的时候，使用了临时表 (Using

temporary)。

拿到第一行 id=1000，试图插入临时表中。但由于 1000 这个值已经存在于临时表

了，违反了唯一性约束，所以插入失败，然后继续执行；

取到第二行 id=999，插入临时表成功。



图 2 union 执行流程

可以看到，这里的内存临时表起到了暂存数据的作用，而且计算过程还用上了临时表主键

id 的唯一性约束，实现了 union 的语义。

顺便提一下，如果把上面这个语句中的 union 改成 union all 的话，就没有了“去重”的

语义。这样执行的时候，就依次执行子查询，得到的结果直接作为结果集的一部分，发给客

户端。因此也就不需要临时表了。

图 3 union all 的 explain 结果



可以看到，第二行的 Extra 字段显示的是 Using index，表示只使用了覆盖索引，没有用临

时表了。

group by 执行流程

另外一个常见的使用临时表的例子是 group by，我们来看一下这个语句：

这个语句的逻辑是把表 t1 里的数据，按照 id%10 进行分组统计，并按照 m 的结果排序后

输出。它的 explain 结果如下：

图 4 group by 的 explain 结果

在 Extra 字段里面，我们可以看到三个信息：

这个语句的执行流程是这样的：

1. 创建内存临时表，表里有两个字段 m 和 c，主键是 m；

2. 扫描表 t1 的索引 a，依次取出叶子节点上的 id 值，计算 id%10 的结果，记为 x；

3. 遍历完成后，再根据字段 m 做排序，得到结果集返回给客户端。

1 select id%10 as m, count(*) as c from t1 group by m;

复制代码

Using index，表示这个语句使用了覆盖索引，选择了索引 a，不需要回表；

Using temporary，表示使用了临时表；

Using filesort，表示需要排序。

如果临时表中没有主键为 x 的行，就插入一个记录 (x,1);

如果表中有主键为 x 的行，就将 x 这一行的 c 值加 1；



这个流程的执行图如下：

图 5 group by 执行流程

图中最后一步，对内存临时表的排序，在第 17 篇文章中已经有过介绍，我把图贴过来，方

便你回顾。

https://time.geekbang.org/column/article/73795


图 6 内存临时表排序流程

其中，临时表的排序过程就是图 6 中虚线框内的过程。

接下来，我们再看一下这条语句的执行结果：



图 7 group by 执行结果

如果你的需求并不需要对结果进行排序，那你可以在 SQL 语句末尾增加 order by null，也

就是改成：

这样就跳过了最后排序的阶段，直接从临时表中取数据返回。返回的结果如图 8 所示。

1 select id%10 as m, count(*) as c from t1 group by m order by null;

复制代码



图 8 group + order by null 的结果（内存临时表）

由于表 t1 中的 id 值是从 1 开始的，因此返回的结果集中第一行是 id=1；扫描到 id=10

的时候才插入 m=0 这一行，因此结果集里最后一行才是 m=0。

这个例子里由于临时表只有 10 行，内存可以放得下，因此全程只使用了内存临时表。但

是，内存临时表的大小是有限制的，参数 tmp_table_size 就是控制这个内存大小的，默认

是 16M。

如果我执行下面这个语句序列：

把内存临时表的大小限制为最大 1024 字节，并把语句改成 id % 100，这样返回结果里有

100 行数据。但是，这时的内存临时表大小不够存下这 100 行数据，也就是说，执行过程

中会发现内存临时表大小到达了上限（1024 字节）。

那么，这时候就会把内存临时表转成磁盘临时表，磁盘临时表默认使用的引擎是 InnoDB。

这时，返回的结果如图 9 所示。

图 9 group + order by null 的结果（磁盘临时表）

1

2

set tmp_table_size=1024;
select id%100 as m, count(*) as c from t1 group by m order by null limit 10;

复制代码



如果这个表 t1 的数据量很大，很可能这个查询需要的磁盘临时表就会占用大量的磁盘空

间。

group by 优化方法 -- 索引

可以看到，不论是使用内存临时表还是磁盘临时表，group by 逻辑都需要构造一个带唯一

索引的表，执行代价都是比较高的。如果表的数据量比较大，上面这个 group by 语句执行

起来就会很慢，我们有什么优化的方法呢？

要解决 group by 语句的优化问题，你可以先想一下这个问题：执行 group by 语句为什么

需要临时表？

group by 的语义逻辑，是统计不同的值出现的个数。但是，由于每一行的 id%100 的结果

是无序的，所以我们就需要有一个临时表，来记录并统计结果。

那么，如果扫描过程中可以保证出现的数据是有序的，是不是就简单了呢？

假设，现在有一个类似图 10 的这么一个数据结构，我们来看看 group by 可以怎么做。



图 10 group by 算法优化 - 有序输入

可以看到，如果可以确保输入的数据是有序的，那么计算 group by 的时候，就只需要从左

到右，顺序扫描，依次累加。也就是下面这个过程：

按照这个逻辑执行的话，扫描到整个输入的数据结束，就可以拿到 group by 的结果，不需

要临时表，也不需要再额外排序。

你一定想到了，InnoDB 的索引，就可以满足这个输入有序的条件。

在 MySQL 5.7 版本支持了 generated column 机制，用来实现列数据的关联更新。你可

以用下面的方法创建一个列 z，然后在 z 列上创建一个索引（如果是 MySQL 5.6 及之前的

版本，你也可以创建普通列和索引，来解决这个问题）。

当碰到第一个 1 的时候，已经知道累积了 X 个 0，结果集里的第一行就是 (0,X);

当碰到第一个 2 的时候，已经知道累积了 Y 个 1，结果集里的第二行就是 (1,Y);



这样，索引 z 上的数据就是类似图 10 这样有序的了。上面的 group by 语句就可以改成：

优化后的 group by 语句的 explain 结果，如下图所示：

图 11 group by 优化的 explain 结果

从 Extra 字段可以看到，这个语句的执行不再需要临时表，也不需要排序了。

group by 优化方法 -- 直接排序

所以，如果可以通过加索引来完成 group by 逻辑就再好不过了。但是，如果碰上不适合创

建索引的场景，我们还是要老老实实做排序的。那么，这时候的 group by 要怎么优化呢？

如果我们明明知道，一个 group by 语句中需要放到临时表上的数据量特别大，却还是要按

照“先放到内存临时表，插入一部分数据后，发现内存临时表不够用了再转成磁盘临时

表”，看上去就有点儿傻。

那么，我们就会想了，MySQL 有没有让我们直接走磁盘临时表的方法呢？

答案是，有的。

在 group by 语句中加入 SQL_BIG_RESULT 这个提示（hint），就可以告诉优化器：这个

语句涉及的数据量很大，请直接用磁盘临时表。

1 alter table t1 add column z int generated always as(id % 100), add index(z);

复制代码

1 select z, count(*) as c from t1 group by z;

复制代码



MySQL 的优化器一看，磁盘临时表是 B+ 树存储，存储效率不如数组来得高。所以，既然

你告诉我数据量很大，那从磁盘空间考虑，还是直接用数组来存吧。

因此，下面这个语句

的执行流程就是这样的：

1. 初始化 sort_buffer，确定放入一个整型字段，记为 m；

2. 扫描表 t1 的索引 a，依次取出里面的 id 值, 将 id%100 的值存入 sort_buffer 中；

3. 扫描完成后，对 sort_buffer 的字段 m 做排序（如果 sort_buffer 内存不够用，就会利

用磁盘临时文件辅助排序）；

4. 排序完成后，就得到了一个有序数组。

根据有序数组，得到数组里面的不同值，以及每个值的出现次数。这一步的逻辑，你已经从

前面的图 10 中了解过了。

下面两张图分别是执行流程图和执行 explain 命令得到的结果。

1 select SQL_BIG_RESULT id%100 as m, count(*) as c from t1 group by m;

复制代码



图 12 使用 SQL_BIG_RESULT 的执行流程图

图 13 使用 SQL_BIG_RESULT 的 explain 结果

从 Extra 字段可以看到，这个语句的执行没有再使用临时表，而是直接用了排序算法。

基于上面的 union、union all 和 group by 语句的执行过程的分析，我们来回答文章开头

的问题：MySQL 什么时候会使用内部临时表？

1. 如果语句执行过程可以一边读数据，一边直接得到结果，是不需要额外内存的，否则就

需要额外的内存，来保存中间结果；

2. join_buffer 是无序数组，sort_buffer 是有序数组，临时表是二维表结构；



3. 如果执行逻辑需要用到二维表特性，就会优先考虑使用临时表。比如我们的例子中，

union 需要用到唯一索引约束， group by 还需要用到另外一个字段来存累积计数。

小结

通过今天这篇文章，我重点和你讲了 group by 的几种实现算法，从中可以总结一些使用的

指导原则：

1. 如果对 group by 语句的结果没有排序要求，要在语句后面加 order by null；

2. 尽量让 group by 过程用上表的索引，确认方法是 explain 结果里没有 Using

temporary 和 Using filesort；

3. 如果 group by 需要统计的数据量不大，尽量只使用内存临时表；也可以通过适当调大

tmp_table_size 参数，来避免用到磁盘临时表；

4. 如果数据量实在太大，使用 SQL_BIG_RESULT 这个提示，来告诉优化器直接使用排序算

法得到 group by 的结果。

最后，我给你留下一个思考题吧。

文章中图 8 和图 9 都是 order by null，为什么图 8 的返回结果里面，0 是在结果集的最后

一行，而图 9 的结果里面，0 是在结果集的第一行？

你可以把你的分析写在留言区里，我会在下一篇文章和你讨论这个问题。感谢你的收听，也

欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

上期的问题是：为什么不能用 rename 修改临时表的改名。

在实现上，执行 rename table 语句的时候，要求按照“库名 / 表名.frm”的规则去磁盘找

文件，但是临时表在磁盘上的 frm 文件是放在 tmpdir 目录下的，并且文件名的规则

是“#sql{进程 id}_{线程 id}_ 序列号.frm”，因此会报“找不到文件名”的错误。

评论区留言点赞板：

@poppy 同学，通过执行语句的报错现象推测了这个实现过程。



© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 36 | 为什么临时表可以重名？

下一篇 38 | 都说InnoDB好，那还要不要使用Memory引擎？

老杨同志
2019-02-06

 10

请教一个问题：如果只需要去重，不需要执行聚合函数，distinct 和group by那种效率高
一些呢？ 
 
课后习题: 
图8，把统计结果存内存临时表，不排序。id是从1到1000，模10的结果顺序就是1、2、…
展开

作者回复: 新年好 

 

好问题，我加到后面文章中。 

简单说下结论，只需要去重的话，如果没有limit，是一样的； 

精选留言 (30)  写留言



有limit的话，distinct 快些。 

 

漂亮的回答👍 

 

天王
2019-02-28

 4

内部临时表，和sort buffer,join buffer一样，都用来存放语句执行过程中的中间数据，辅
助语句的执行。 
使用用法 using temporary。 
 
使用场景：1 数据一边查询，一边直接得到结果，不需要额外内存。比如：group by 需…
展开

作者回复: 👍很好的总结

IceGeek17
2019-02-21

 3

文中说，SQL_BIG_RESULT这个hint，用来告诉优化器直接用磁盘临时表， 
对于文中的例子 select SQL_BIG_RESULT id%100 as m, count(*) as c from t1 group
by m; 
则没有使用临时表，直接用了排序算法，这里有点不太明白，SQL_BIG_RESULT这个hint
到底用来提示的是什么（是用磁盘临时表，还是就是直接使用排序，不用临时表）？ …
展开

作者回复: 1. 最后的结果是“直接使用排序” 

2. 就是认为用sort_buffer直接排序性能更好，所以就没有使用内存临时表或磁盘临时表 

3. 没有索引的内存表可以认为就是数组； 主键不是，内存表的表结构，可以看一下38篇

Li Shundu...
2019-02-07

 3

请问Group By部分的第一个语句 explain select id%10 as m, count(*) as c from t1
group by m；为什么选择的是索引a，而不是primary key？如果字段a上有空值，使用索



引a岂不是就不能取到所有的id值了？

作者回复: 因为索引c的信息也足够，而且比主键索引小，使用索引c更会好。 

 

“如果字段a上有空值，使用索引a岂不是就不能取到所有的id值了？”，不会的

长杰
2019-02-06

 2

图九使用的是磁盘临时表，磁盘临时表使用的引擎是innodb，innodb是索引组织表，按
主键顺序存储数据，所以是按照m字段有序的。

展开

作者回复: � 

春节快乐

Sinyo
2019-03-07

 1

老师好，好奇怪我用infobright列式存储引擎explain一条union语句，发现是不用临时表
的，测试了很多次： 
比如： 
EXPLAIN  
(SELECT 111) …
展开

Sinyo
2019-02-28

 1

老师好， 
我用infobright列式存储引擎explain出来一个group by语句， 
发现也会用到内存临时表和文件排序、然后使用SQL_BIG_RESULT也有同样优化效果； 
这是不是说明sort_buffer、join_buffer、内存临时表和磁盘临时表与数据库引擎类型其实
是独立开的呢？

展开



作者回复: 是的，非常好的验证和思考👍 

 

sort_buffer、join_buffer、内存临时表和磁盘临时表 都是server层的，引擎间共用

梦康
2019-02-11

 1

实践发现文中描述的 group by 执行过程中解释不通。案例如下 
 
select `aid`,sum(`pv`) as num from article_rank force index(idx_day_aid_pv) where
`day`>20190115 group by aid order by num desc LIMIT 10; 
 …
展开

作者回复: 看索引的名字猜测， idx_aid_day_pv 就是(adid, day,pv)这三个字段的联合索引？ 

 

这样的话，第二个语句就会顺序遍历索引，只要找到10个不同的aid就可以了，这个索引不用全部

遍历；这样可以减少很多写入临时表的数据； 

 

但是第一个语句是day开头的， 这样就必须将所有`day`&gt;20190115的记录都存到临时表中，

这个要写入内存表的数据行数肯定比第二个语句多的 

 

所以核心就是这两个语句需要放入临时表的行数不同。 

 

Long
2019-02-10

 1

老师，新年好！ :-) 
 
有几个版本差异的问题： 
（1）图1中的执行计划应该是5.7版本以后的吧，貌似没找到说在哪个环境，我在5.6和5.7
分别测试了，id = 2的那个rows，在5.6版本（5.6.26）是1000，在5.7版本是2行。应该…
展开

作者回复: 1. 是的，我默认是用5.7做的验证，这里5.7做了优化。 

2. 其实你已经找到原因了，就是因为5.6的默认临时表是myisam表，而myisam表是堆表，这里的



堆表，跟38篇介绍的memory引擎是类似的，你看了那篇应该就能知道为什么堆表是最后显示0那

行了 

3. 好问题，不同id从大到小，相同id从上到下 

4. 多谢你的鼓励，还没定，先休息下^_^ 

 

不好意思，你发的第一天就看到了，回复晚了😆

www.xnsms...
2019-04-21



老师您好,课课后小结  
2.尽量让 group by 过程用上表的索引，确认方法是 explain 结果里没有 Using
temporary 和 Using filesort； 
这里我有个疑问,文章的例子中explain 结果里,既出现了using index ,又出现了Using
temporary 和 Using filesort,好像也是使用了所以啊,如果用你这个方法判断,那到底有没…
展开

作者回复: 只要是有Using filesort就表示有排序； 

Using index是表示使用了覆盖索引； 

 

三个都出现就是使用了覆盖索引，但是覆盖索引的顺序扫描不能满足需求，只能排序，而排序过

程用到了临时表

看不到de颜...
2019-04-16



关于图4有个疑惑，还想请老师解答一下。我记得mysql语句执行循序应该是from-
>where->group by->having->select->order->limit。那么为什么图四中在select语句
中起的别名m可以用在group by中作为分组条件呢？按理说不应该是先走group by没有m
字段报错吗？（试验了一下，确实如老师实例中那样执行，但是理论上想不通）

展开

void
2019-04-04



如果 group by 需要统计的数据量不大，尽量只使用内存临时表； 
尽量使用内存临时表 而不加SQL_BIG_RESULT 是不是因为SQL_BIG_RESULT 不分组就排



序 占用太多的sort buff 空间 从而影响同时间段内的其他MySQL 查询。 
最近有个SQL  
select sum（student_active），school_id from dt_school_day goupy by school 扫…
展开

路过
2019-03-28



请教： 
文章中的第一个案例语句，如果把limit 2去掉，即如下： 
(select 1000 as f) union (select id from t1 order by id desc); 
按照我的理解，应该得到从1000到1的降序排列数据。但结果出乎意料： 
1000 …
展开

王旭东
2019-03-21



请问针对group by，如何做到先对表进行order by，再在排序后的集合里进行group by
分组？ 
SELECT * FROM (SELECT * FROM my_table ORDER BY custom_column DESC) t 
 GROUP BY t.group_name;不生效

展开

进阶的码农
2019-03-07



order by range 也会使用临时表

展开

进阶的码农
2019-03-07



select id%10 as m, count(*) as c from t1 group by m; 
我执行这条语句 第一行是1 没有经过排序，我explain 这条语句也没有显示sort 但是显示
用了临时表，可能是什么原因的，和mysql版本有关吗？还是配置？

展开



Sinyo2019-03-01 

谢谢老师解惑， 
再次请教老师，那其他引擎数据库在server层建的磁盘临时表是什么引擎呢？

展开

作者回复: 需要创建临时表的时候，与当前访问数据的引擎无关，都是默认创建内存临时表，内存

不够了转磁盘临时表（默认是innodb 表）

黄文韬
2019-02-15



老师，有两个问题不是很清楚: 
1. 图三显示union all没有使用临时表，但是我本地explain看到union all和union的执行计
划是一样的，不知道为什么？是和版本有关系还是其他设置？本地版本5.6 
2.图四 不太理解为什么会用filesort，因为我看你后面执行流程是说会创建一个临时表，主
键是m，那为啥不可以直接根据m来排序，而要用到filesort外部排序，还是这个filesort…
展开

作者回复: 1. 啊 比较奇怪，你可否给一下截图，（比如发个微博，贴图at我），带上表结构哈 

2. 好问题，其实这个是要结合下一篇文章的知识点，内存表的主键不是保证有序的

夜空中最亮...
2019-02-13



过年好，老师。这周 补补落下的课

展开

Long
2019-02-13



老师可能没看到，再发下。 
老师，新年好！ :-) 
 
有几个版本差异的问题： 
（1）图1中的执行计划应该是5.7版本以后的吧，貌似没找到说在哪个环境，我在5.6和5.…
展开




