
45 | 自增id用完怎么办？
2019-02-25 林晓斌

MySQL实战45讲 进入课程

讲述：林晓斌
时长 17:04 大小 15.65M

MySQL 里有很多自增的 id，每个自增 id 都是定义了初始值，然后不停地往上加步长。虽

然自然数是没有上限的，但是在计算机里，只要定义了表示这个数的字节长度，那它就有上

限。比如，无符号整型 (unsigned int) 是 4 个字节，上限就是 2 -1。

既然自增 id 有上限，就有可能被用完。但是，自增 id 用完了会怎么样呢？

今天这篇文章，我们就来看看 MySQL 里面的几种自增 id，一起分析一下它们的值达到上

限以后，会出现什么情况。

表定义自增值 id



32



 下载APP 

说到自增 id，你第一个想到的应该就是表结构定义里的自增字段，也就是我在第 39 篇文章

《自增主键为什么不是连续的？》中和你介绍过的自增主键 id。

表定义的自增值达到上限后的逻辑是：再申请下一个 id 时，得到的值保持不变。

我们可以通过下面这个语句序列验证一下：

可以看到，第一个 insert 语句插入数据成功后，这个表的 AUTO_INCREMENT 没有改变

（还是 4294967295），就导致了第二个 insert 语句又拿到相同的自增 id 值，再试图执行

插入语句，报主键冲突错误。

2 -1（4294967295）不是一个特别大的数，对于一个频繁插入删除数据的表来说，是可

能会被用完的。因此在建表的时候你需要考察你的表是否有可能达到这个上限，如果有可

能，就应该创建成 8 个字节的 bigint unsigned。

InnoDB 系统自增 row_id

如果你创建的 InnoDB 表没有指定主键，那么 InnoDB 会给你创建一个不可见的，长度为

6 个字节的 row_id。InnoDB 维护了一个全局的 dict_sys.row_id 值，所有无主键的

InnoDB 表，每插入一行数据，都将当前的 dict_sys.row_id 值作为要插入数据的 row_id，

然后把 dict_sys.row_id 的值加 1。

实际上，在代码实现时 row_id 是一个长度为 8 字节的无符号长整型 (bigint unsigned)。

但是，InnoDB 在设计时，给 row_id 留的只是 6 个字节的长度，这样写到数据表中时只放

1

2

3

4

5

6

7

8

9

10

11

12

create table t(id int unsigned auto_increment primary key) auto_increment=4294967295;
insert into t values(null);
// 成功插入一行 4294967295
show create table t;
/* CREATE TABLE `t` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4294967295;
*/

insert into t values(null);
//Duplicate entry '4294967295' for key 'PRIMARY'

复制代码

32

https://time.geekbang.org/column/article/80531

了最后 6 个字节，所以 row_id 能写到数据表中的值，就有两个特征：

1. row_id 写入表中的值范围，是从 0 到 2 -1；

2. 当 dict_sys.row_id=2 时，如果再有插入数据的行为要来申请 row_id，拿到以后再取

最后 6 个字节的话就是 0。

也就是说，写入表的 row_id 是从 0 开始到 2 -1。达到上限后，下一个值就是 0，然后继

续循环。

当然，2 -1 这个值本身已经很大了，但是如果一个 MySQL 实例跑得足够久的话，还是可

能达到这个上限的。在 InnoDB 逻辑里，申请到 row_id=N 后，就将这行数据写入表中；

如果表中已经存在 row_id=N 的行，新写入的行就会覆盖原有的行。

要验证这个结论的话，你可以通过 gdb 修改系统的自增 row_id 来实现。注意，用 gdb 改

变量这个操作是为了便于我们复现问题，只能在测试环境使用。

图 1 row_id 用完的验证序列

48

48

48

48

图 2 row_id 用完的效果验证

可以看到，在我用 gdb 将 dict_sys.row_id 设置为 2 之后，再插入的 a=2 的行会出现在

表 t 的第一行，因为这个值的 row_id=0。之后再插入的 a=3 的行，由于 row_id=1，就

覆盖了之前 a=1 的行，因为 a=1 这一行的 row_id 也是 1。

从这个角度看，我们还是应该在 InnoDB 表中主动创建自增主键。因为，表自增 id 到达上

限后，再插入数据时报主键冲突错误，是更能被接受的。

毕竟覆盖数据，就意味着数据丢失，影响的是数据可靠性；报主键冲突，是插入失败，影响

的是可用性。而一般情况下，可靠性优先于可用性。

Xid

在第 15 篇文章《答疑文章（一）：日志和索引相关问题》中，我和你介绍 redo log 和

binlog 相配合的时候，提到了它们有一个共同的字段叫作 Xid。它在 MySQL 中是用来对

应事务的。

那么，Xid 在 MySQL 内部是怎么生成的呢？

MySQL 内部维护了一个全局变量 global_query_id，每次执行语句的时候将它赋值给

Query_id，然后给这个变量加 1。如果当前语句是这个事务执行的第一条语句，那么

MySQL 还会同时把 Query_id 赋值给这个事务的 Xid。

48

https://time.geekbang.org/column/article/73161

而 global_query_id 是一个纯内存变量，重启之后就清零了。所以你就知道了，在同一个

数据库实例中，不同事务的 Xid 也是有可能相同的。

但是 MySQL 重启之后会重新生成新的 binlog 文件，这就保证了，同一个 binlog 文件

里，Xid 一定是惟一的。

虽然 MySQL 重启不会导致同一个 binlog 里面出现两个相同的 Xid，但是如果

global_query_id 达到上限后，就会继续从 0 开始计数。从理论上讲，还是就会出现同一

个 binlog 里面出现相同 Xid 的场景。

因为 global_query_id 定义的长度是 8 个字节，这个自增值的上限是 2 -1。要出现这种

情况，必须是下面这样的过程：

1. 执行一个事务，假设 Xid 是 A；

2. 接下来执行 2 次查询语句，让 global_query_id 回到 A；

3. 再启动一个事务，这个事务的 Xid 也是 A。

不过，2 这个值太大了，大到你可以认为这个可能性只会存在于理论上。

Innodb trx_id

Xid 和 InnoDB 的 trx_id 是两个容易混淆的概念。

Xid 是由 server 层维护的。InnoDB 内部使用 Xid，就是为了能够在 InnoDB 事务和

server 之间做关联。但是，InnoDB 自己的 trx_id，是另外维护的。

其实，你应该非常熟悉这个 trx_id。它就是在我们在第 8 篇文章《事务到底是隔离的还是

不隔离的？》中讲事务可见性时，用到的事务 id（transaction id）。

InnoDB 内部维护了一个 max_trx_id 全局变量，每次需要申请一个新的 trx_id 时，就获得

max_trx_id 的当前值，然后并将 max_trx_id 加 1。

InnoDB 数据可见性的核心思想是：每一行数据都记录了更新它的 trx_id，当一个事务读到

一行数据的时候，判断这个数据是否可见的方法，就是通过事务的一致性视图与这行数据的

trx_id 做对比。

64

64

64

https://time.geekbang.org/column/article/70562

对于正在执行的事务，你可以从 information_schema.innodb_trx 表中看到事务的

trx_id。

我在上一篇文章的末尾留给你的思考题，就是关于从 innodb_trx 表里面查到的 trx_id 的。

现在，我们一起来看一个事务现场：

图 3 事务的 trx_id

session B 里，我从 innodb_trx 表里查出的这两个字段，第二个字段

trx_mysql_thread_id 就是线程 id。显示线程 id，是为了说明这两次查询看到的事务对应

的线程 id 都是 5，也就是 session A 所在的线程。

可以看到，T2 时刻显示的 trx_id 是一个很大的数；T4 时刻显示的 trx_id 是 1289，看上去

是一个比较正常的数字。这是什么原因呢？

实际上，在 T1 时刻，session A 还没有涉及到更新，是一个只读事务。而对于只读事务，

InnoDB 并不会分配 trx_id。也就是说：

1. 在 T1 时刻，trx_id 的值其实就是 0。而这个很大的数，只是显示用的。一会儿我会再和

你说说这个数据的生成逻辑。

2. 直到 session A 在 T3 时刻执行 insert 语句的时候，InnoDB 才真正分配了 trx_id。所

以，T4 时刻，session B 查到的这个 trx_id 的值就是 1289。

需要注意的是，除了显而易见的修改类语句外，如果在 select 语句后面加上 for update，

这个事务也不是只读事务。

在上一篇文章的评论区，有同学提出，实验的时候发现不止加 1。这是因为：

1. update 和 delete 语句除了事务本身，还涉及到标记删除旧数据，也就是要把数据放到

purge 队列里等待后续物理删除，这个操作也会把 max_trx_id+1， 因此在一个事务中

至少加 2；

2. InnoDB 的后台操作，比如表的索引信息统计这类操作，也是会启动内部事务的，因此

你可能看到，trx_id 值并不是按照加 1 递增的。

那么，T2 时刻查到的这个很大的数字是怎么来的呢？

其实，这个数字是每次查询的时候由系统临时计算出来的。它的算法是：把当前事务的 trx

变量的指针地址转成整数，再加上 2 。使用这个算法，就可以保证以下两点：

1. 因为同一个只读事务在执行期间，它的指针地址是不会变的，所以不论是在 innodb_trx

还是在 innodb_locks 表里，同一个只读事务查出来的 trx_id 就会是一样的。

2. 如果有并行的多个只读事务，每个事务的 trx 变量的指针地址肯定不同。这样，不同的

并发只读事务，查出来的 trx_id 就是不同的。

那么，为什么还要再加上 2 呢？

在显示值里面加上 2 ，目的是要保证只读事务显示的 trx_id 值比较大，正常情况下就会区

别于读写事务的 id。但是，trx_id 跟 row_id 的逻辑类似，定义长度也是 8 个字节。因

此，在理论上还是可能出现一个读写事务与一个只读事务显示的 trx_id 相同的情况。不过

这个概率很低，并且也没有什么实质危害，可以不管它。

48

48

48

另一个问题是，只读事务不分配 trx_id，有什么好处呢？

由于只读事务不分配 trx_id，一个自然而然的结果就是 trx_id 的增加速度变慢了。

但是，max_trx_id 会持久化存储，重启也不会重置为 0，那么从理论上讲，只要一个

MySQL 服务跑得足够久，就可能出现 max_trx_id 达到 2 -1 的上限，然后从 0 开始的情

况。

当达到这个状态后，MySQL 就会持续出现一个脏读的 bug，我们来复现一下这个 bug。

首先我们需要把当前的 max_trx_id 先修改成 2 -1。注意：这个 case 里使用的是可重复

读隔离级别。具体的操作流程如下：

一个好处是，这样做可以减小事务视图里面活跃事务数组的大小。因为当前正在运行的只

读事务，是不影响数据的可见性判断的。所以，在创建事务的一致性视图时，InnoDB 就

只需要拷贝读写事务的 trx_id。

另一个好处是，可以减少 trx_id 的申请次数。在 InnoDB 里，即使你只是执行一个普通

的 select 语句，在执行过程中，也是要对应一个只读事务的。所以只读事务优化后，普

通的查询语句不需要申请 trx_id，就大大减少了并发事务申请 trx_id 的锁冲突。

48

48

图 4 复现脏读

由于我们已经把系统的 max_trx_id 设置成了 2 -1，所以在 session A 启动的事务 TA 的

低水位就是 2 -1。

在 T2 时刻，session B 执行第一条 update 语句的事务 id 就是 2 -1，而第二条 update

语句的事务 id 就是 0 了，这条 update 语句执行后生成的数据版本上的 trx_id 就是 0。

48

48

48

在 T3 时刻，session A 执行 select 语句的时候，判断可见性发现，c=3 这个数据版本的

trx_id，小于事务 TA 的低水位，因此认为这个数据可见。

但，这个是脏读。

由于低水位值会持续增加，而事务 id 从 0 开始计数，就导致了系统在这个时刻之后，所有

的查询都会出现脏读的。

并且，MySQL 重启时 max_trx_id 也不会清 0，也就是说重启 MySQL，这个 bug 仍然存

在。

那么，这个 bug 也是只存在于理论上吗？

假设一个 MySQL 实例的 TPS 是每秒 50 万，持续这个压力的话，在 17.8 年后，就会出现

这个情况。如果 TPS 更高，这个年限自然也就更短了。但是，从 MySQL 的真正开始流行

到现在，恐怕都还没有实例跑到过这个上限。不过，这个 bug 是只要 MySQL 实例服务时

间够长，就会必然出现的。

当然，这个例子更现实的意义是，可以加深我们对低水位和数据可见性的理解。你也可以借

此机会再回顾下第 8 篇文章《事务到底是隔离的还是不隔离的？》中的相关内容。

thread_id

接下来，我们再看看线程 id（thread_id）。其实，线程 id 才是 MySQL 中最常见的一种

自增 id。平时我们在查各种现场的时候，show processlist 里面的第一列，就是

thread_id。

thread_id 的逻辑很好理解：系统保存了一个全局变量 thread_id_counter，每新建一个连

接，就将 thread_id_counter 赋值给这个新连接的线程变量。

thread_id_counter 定义的大小是 4 个字节，因此达到 2 -1 后，它就会重置为 0，然后

继续增加。但是，你不会在 show processlist 里看到两个相同的 thread_id。

这，是因为 MySQL 设计了一个唯一数组的逻辑，给新线程分配 thread_id 的时候，逻辑

代码是这样的：

32

https://time.geekbang.org/column/article/70562

这个代码逻辑简单而且实现优雅，相信你一看就能明白。

小结

今天这篇文章，我给你介绍了 MySQL 不同的自增 id 达到上限以后的行为。数据库系统作

为一个可能需要 7*24 小时全年无休的服务，考虑这些边界是非常有必要的。

每种自增 id 有各自的应用场景，在达到上限后的表现也不同：

1. 表的自增 id 达到上限后，再申请时它的值就不会改变，进而导致继续插入数据时报主键

冲突的错误。

2. row_id 达到上限后，则会归 0 再重新递增，如果出现相同的 row_id，后写的数据会覆

盖之前的数据。

3. Xid 只需要不在同一个 binlog 文件中出现重复值即可。虽然理论上会出现重复值，但是

概率极小，可以忽略不计。

4. InnoDB 的 max_trx_id 递增值每次 MySQL 重启都会被保存起来，所以我们文章中提到

的脏读的例子就是一个必现的 bug，好在留给我们的时间还很充裕。

5. thread_id 是我们使用中最常见的，而且也是处理得最好的一个自增 id 逻辑了。

当然，在 MySQL 里还有别的自增 id，比如 table_id、binlog 文件序号等，就留给你去验

证和探索了。

不同的自增 id 有不同的上限值，上限值的大小取决于声明的类型长度。而我们专栏声明的

上限 id 就是 45，所以今天这篇文章也是我们的最后一篇技术文章了。

既然没有下一个 id 了，课后也就没有思考题了。今天，我们换一个轻松的话题，请你来说

说，读完专栏以后有什么感想吧。

这个“感想”，既可以是你读完专栏前后对某一些知识点的理解发生的变化，也可以是你积

累的学习专栏文章的好方法，当然也可以是吐槽或者对未来的期望。

1

2

3

do {
 new_id= thread_id_counter++;
} while (!thread_ids.insert_unique(new_id).second);

复制代码

欢迎你给我留言，我们在评论区见，也欢迎你把这篇文章分享给更多的朋友一起阅读。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 44 | 答疑文章（三）：说一说这些好问题

下一篇 结束语 | 点线网面，一起构建MySQL知识网络

Continue
2019-02-25

 20

跟着学了三个多月，受益匪浅，学到了很多新的知识和其中的原理！

作者回复: 早🤝

克劳德
2019-02-25

 12

精选留言 (75)  写留言

本人服务端工程师，在学习这门课之前数据库一直是我的短板，曾听朋友说MySQL或数据
库中涉及了很多方面的知识点，每一个拿出来展开讲几乎都能出一本书了，对数据库是越
来越忌惮，同时也因为工作上并没有过多接触，水平便一直停留在编写简单SQL层面。
在面试中被问到数据库问题，只能无奈的说这块不太清楚，也曾在网上自学过，但网上的
文章知识点比较零散，很多都是给出一些结论性的观点，由于不了解其内部原理，记忆…
展开

作者回复: 👍“切磋切磋“

留言不会“过时”哈，在对应的章节下面提出相关的问题，我会持续关注评论区

夜空中最亮...
2019-02-25

 6

不知道是最后一篇，否则的话就慢些读完了；
我是一名运维，公司也没有DBA，所以MySQL库也归我收拾；
读了老师的专栏，操作起数据库来，心情更好了；
老师的课，让我有了想看完《高性能MySQL》的兴趣；
听了老师的课，开发都来问我数据库的问题了，高兴； …
展开

作者回复: 谢谢你

“开发都来问我数据库的问题了”，当年我也是这么开始“入坑”，加油

三胖
2019-02-25

 6

老师，我才学了四分之一的课程，但是这门课已经更新完了，我是直接跑到最后一节技术
篇来留言的！很想知道，后来者比如我在学到后面的课程时遇到问题留言，老师还会看会
回复吗？（老师的课程超值！！）

作者回复: 会看的

后台系统是按照留言时间显示的

而且我在这事情上有强迫症，一定会让“未处理问题”变成0的😆

只是说如果是其他同学评论区问过的问题，我可能就不会重复回复了

某、人
2019-02-26

 3

很遗憾没能坚持到最后,但是也很庆幸能遇到这么好的专栏。以前了解mysql都是一些零散
的知识点,通过学习完专栏,不论是mysql整体架构还是基础的知识点,都有了更深的认识。以
后就把老师的文档当官方文档查,出现问题先来看看专栏。
感触特别深的是,老师对于提到的每一个问题,都会严谨又认真的去回答,尽量帮助每一位同学
都能有所收获。要做到这一点，是特别耗费精力的。 …
展开

作者回复: 刚过完年都是很忙的， 找时间补上哈，等你的评论区留言^_^

IceGeek17
2019-02-25

 2

感谢老师，课程受益匪浅，
课程结束后，如果有问题，是继续在这里的评论区提问，还是会有另外一条答疑通道？

另外，在第35篇我提了几个问题，老师还没有回答，我这里再贴一下，老师看一下
问题一： …
展开

作者回复: 就在我们评论区，提跟文章相关的内容，会继续关注。

问题一、前面的过程理解正确，MRR过程用的是read_rnd_buffer

问题二、其实我们文中最后那个过程，你把他设想成在MySQL内部执行。。

问题三、这种复杂的语句，你要把我们两部分知识点连起来看。一个原则：for update的话，执

行语句过程中扫到的间隙和记录都要加锁。 当然最好是不这么做，拆成两个语句会好些。

问题四、还是我文中的建议，如果都用NLJ或BKA算法的join其实还好，所以看看explain。

降低join表数量的方法，基本上行就是冗余字段和拆成多个语句这两个方向了

NoDBA
2019-02-27

 1

低版本thread_id超过2^32-1后，在general log显示是负数，高版本貌似没有这个问题，
是否高版本的thread_id是8字节呢？

展开

作者回复: 主要不是定义的问题，而是打印的时候代码问题，按照这个代码输出的：

"%5ld ", (long) thread_id

是个bug， 超过2^31就变成负数了，

新版本改了

好问题😆

封建的风
2019-02-27

 1

之前很多知识点有点粗浅，尤其在行版本可见性，redo log&bin log关系，加锁的原理章
节，深入浅出，受益匪浅。感谢老师精品专栏，后期再二刷

展开

kun
2019-02-26

 1

感觉戛然而止哈 没学够，后面还会再回顾，老师辛苦！

展开

星辰大海
2019-02-26

 1

终于追上来了，很感谢老师的付出。

展开

长杰
2019-02-26

 1

感谢老师，通过本课程的学习，加深了mysql原理上的理解，特别是间隙锁，
nextkeylock，join操作上，事物的一致性以及binlog和redolog的配合。感觉还意犹未

尽，希望后续还能在这里和老师互动，为我们答疑解惑，再次感谢老师！

展开

作者回复: 会的，

也感谢你们一路相伴🤝

亮
2019-02-25

 1

老师，sql 的where里 < 10001 和 <= 10000有什么区别吗？

作者回复: 这要看你关注的是什么

你这么问，应该这个字段是整型吧？

从查询结果可能是一样的，

不过锁的范围不同，你可以看下21篇

Leon📷
2019-02-25

 1

跟着老师终于学到了最后，每天的地铁时间无比充实，我对mysql的基本原理和工作流程
大致有了初步的了解，而不是以前的增删查改，打算以后抽时间再二刷三刷，等全部搞懂
后，再去看看高性能mysql这本书，如果时间允许，打算再去自己参照教程实现一个简易
的DB，课程虽然结束了，仍然感觉意犹未尽，希望老师拉一个倍洽群，大家一起在里面讨
论和学习

展开

作者回复: 👍

评论区一直会开放

大家到对应的文章去提相关问题 🤝

二刷三刷我也一直在哦😆

Dkey
2019-02-25

 1

当前系统并无其他事务存在时，启动一个只读事务时（意味没有事务id），它的低高水位
是怎么样的老师。

作者回复: 假设当前没有其他事务存在，假设当前的max_trx_id=N,

这时候启动一个只读事务，它的高低水位就都是N。

shawn
2019-02-25

 1

受益匪浅，最后几讲还想了解下null值如何建立索引，由于null直接不能比较和排序，
MySQL能区分出每一个null值吗

展开

作者回复: 可以，因为普通索引上都有主键值对吧，

所以其实是 (null, id1), (null, id2)

长杰
2019-02-25

 1

对于一个特大的表加字段，字段的属性设置为Null和设置为not null并指定默认值，在执行
时间和性能上是否有区别？在sqlserver是我记得是有区别的。

展开

作者回复: 在MySQL里没有区别😆

都是要重建表的

如果特大，考虑到省空间，还是设置为not null吧

Break
2019-05-08



一刷完成了. 跳过了小部分服务端工程师不会用到的底层细节, 等二刷再看情况学. 哈哈.

作者回复: 这样很好😆👍

画船听雨眠
2019-05-07



粗读了一遍专栏，感觉受益匪浅！很多以前只知其然，不知其所以然的地方都有些豁然开
朗！以后遇到mysql问题还可以对着专栏来验证，很不错！

展开

是我的海
2019-05-06



极客时间 最好的专栏 ---- 没有之一 ！！！
感谢林老师细致的讲解，对于评论区的几乎每个问题的耐心回复，从评论区也学到很多东
西。
希望有机会江湖相见。。。

坚持去学习
2019-04-28



菜鸟一枚才学浅
走马观花看专栏
一生运维甚可叹
点滴积累玩不转
老师功底很深厚 …
展开

