
什么是版本控制系统（VCS）
很多⼈认为 Git 难以理解的第⼀个⻔槛在于：所谓的「Git 是⼀个分
布式版本控制系统」这句话的具体含义不够清楚。其实分布式版本控
制系统（Distributed Version Control System - DVCS）这个定义
并不难，不过⼀步⼀步来，我先告诉你，什么是版本控制系统
（Version Control System - VCS）。

版本控制：最基本功能

版本控制系统（VCS）最基本的功能是版本控制。所谓版
本控制，意思就是在⽂件的修改历程中保留修改历史，
让你可以⽅便地撤销之前对⽂件的修改操作。

最简化的版本控制模型，是⼤多数主流⽂本编辑器都有的「撤销
（Undo）」功能：你本来想删除⼀个字符，却在按删除键之前不⼩
⼼选中了全⽂，结果⼀下⼦整篇⽂档都被删光了，没关系，按⼀下
「撤销」(Ctrl + Z 或 ⌘ + Z 或 U 等等，具体和你的操作系统以及
编辑器有关），删掉的⽂字就都回来了。这其实是⽂本编辑器帮你⾃
动保存了之前的内容，当你按下「撤销」的时候，它就帮你把内容回
退到上⼀个状态；同理，按⼀次是会退到上⼀个版本，按两次就是回
退到上上⼀个版本。

写程序的时候同样也难免会遇到「写错」的情况，所以程序的
VCS，当然也会需要版本控制功能，这样当你发现「昨天有⼀⾏代码
写错了」，你就不⽤凭着记忆把那段代码背出来，⽽只需要在 VCS
中选择撤回到昨天的那个版本。

主动提交：程序代码和普通⽂本的区别



VCS 和⽂本编辑器的撤销功能⽐起来，有⼀个很重要的区别是：程
序代码的修改的⽣命周期⾮常⻓。⼀次代码的修改，在⼏天后、⼏个
⽉后、⼏年后都有可能需要被翻出来。如果依然采⽤「每次改动⾃动
保存」的形式来保留修改历史，将会导致改动历史⾮常频繁和⽆章可
循，这样，历史代码的查找、阅读和回退就会很困难了。所以，和⽂
本编辑器的撤销功能不同，VCS 保存修改历史，使⽤的是主动提交
改动的机制。

在你写了⼀段完整的代码（例如修复了⼀个 bug）之后，使⽤
commit 命令把改动和对改动的描述信息提交，这次改动就被记录到
版本历史中了。之后如果你希望回退到这个版本，就可以从 VCS 的
历史⽇志中⽅便地找到它。

多⼈合作的同步需求：中央仓库

代码可以⼀个⼈写，但更多的时候会是多个⼈共同开发。那么⾃然
地，就需要有⼀个中央仓库作为代码的存储中⼼：所有⼈的改动都会
上传到这⾥，所有⼈都能也都能看到和下载到别⼈上传的改动。

这样，解决了同步的需求，多个⼈在不同的机器上开发同⼀个程序就
成了可能。

版本控制、主动提交、中央仓库这三个要素，共同构成了版本控制系
统（VCS）的核⼼：开发团队中的每个⼈向中央仓库主动提交⾃⼰的
改动和同步别⼈的改动，并在需要的时候查看和操作历史版本，这就
是版本控制系统。

中央式版本控制系统

最初的版本控制系统，是中央式版本控制系统（Centralized
VCS），也就是前⾯我讲的这种。Git 是分布式的版本控制系统
（Distributed VCS），它和中央式的区别我在下节说，现在先说⼀
下中央式版本控制系统的⼯作模型。



⼯作模型

假设你在⼀个三⼈团队，你们计划开发⼀个软件或者系统，并决定使
⽤中央式 VCS 来管理代码。于是：

1. 作为项⽬的主⼯程师，你独⾃⼀⼈花两天时间搭建了项⽬的框
架；

2. 然后，你在公司的服务器（这个服务器可以是公司内的设备，
也可以是你们买的云服务）上创建了⼀个中央仓库，并把你的
代码提交到了中央仓库上；

3. 你的两个队友从中央仓库取到了你的初始代码，从此刻开始，
你们三⼈开始并⾏开发；

4. 在之后的开发过程中，你们三⼈为了⼯作⽅便，总是每⼈独⽴
负责开发⼀个功能，在这个功能开发完成后，这个⼈就把他的
这些新代码提交到中央仓库；

5. 每次当有⼈把代码提交到中央仓库的时候，另外两个⼈就可以
选择把这些代码同步到⾃⼰的机器上，保持⾃⼰的本地代码总
是最新的。



⽽对于团队中的每个⼈来说，就会更简单⼀点：

1. 第⼀次加⼊团队时，把中央仓库的代码取下来；
2. 写完的新功能提交到中央仓库；
3. 同事提交到中央仓库的新代码，及时同步下来。

这样，⼀个三⼈的团队就成功做到了各⾃在⾃⼰的电脑上开发同⼀个
项⽬，并且互不影响，就好像你们三个⼈是在同⼀台电脑上操作⼀
样。

这就是中央式 VCS 最基本的⼯作模型。当然，实际的开发⼯作并没
有简单到这种程度，因为你时常会需要处理代码冲突、查看版本历
史、回退代码版本等；另外，Git 属于分布式 VCS，它的概念也⽐中
央式 VCS 要复杂⼀些。但这些概念你需要⼀步步地理解和吸收，你
现在只需要先知道中央式 VCS 的这个基本⼯作模型，其他的内容我
会在后⾯慢慢地全部讲清楚。


