
进阶 4：Feature Branching：
最流⾏的⼯作流

在前⾯的《上⼿ 2》这⼀节⾥，我介绍了⼀种最基本的团队⼯作模
型。在这种模型⾥，所有⼈都⼯作在 master 上，写完了的
commit 可以通过 push 来发送到中央仓库，并且可以使⽤ pull 来
获取到别⼈的最新 commits。

这种⼯作模型解决了团队合作最基本的问题：多⼈并⾏开发和版本管
理。事实上，这也是早期的 VCS——中央式 VCS 的⼯作模型。

但这种⼯作模型也有它的限制：使⽤这种⼯作模型时，每个⼈的代码
在被⼤家看到的时候，就是它进⼊正式的⽣产库的时候。所有⼈的⼯
作都会被直接 push 到 master，这导致每个⼈的代码在正式启⽤前
⽆法被别⼈看到（严格来讲是有办法的，别⼈可以直接从你的电脑上
pull ，Git 的「分布式」不是说说的。但——这种做法超级不⽅
便），这样就让代码在正式启⽤前的讨论和 review（审阅）⾮常不
⽅便。现在的商业团队，开发项⽬多是采⽤「边开发边发布、边开发
边更新、边开发边修复」的持续开发策略，所以代码分享的不便会极
⼤地影响团队的开发效率。

这⼀节，我将介绍的是⽬前最流⾏（不论是中国还是世界）的团队开
发的⼯作流：Feature Branching。

简介

这种⼯作流的核⼼内容可以总结为两点：

1. 任何新的功能（feature）或 bug 修复全都新建⼀个 branch
来写；

2. branch 写完后，合并到 master，然后删掉这个 branch。

这就是这种⼯作流最基本的模型。

从上⾯的动图来看，这种⼯作流似乎没什么特别之处。但实质上，
Feature Branching 这种⼯作流，为团队开发时两个关键的问题——
代码分享和⼀⼈多任务——提供了解决⽅案。

1. 代码分享

假设你在⼀个叫做「掘⾦」的团队⼯作，现在你要开发⼀个叫做「掘
⾦⼩册」的功能（呵呵），于是你创建了⼀个新的 branch 叫做
books，然后开始在 books 上进⾏开发⼯作。

git checkout -b books

在⼗⼏个 commits 过后，「掘⾦⼩册」的基本功能开发完毕，你就
把代码 push 到中央仓库（例如 GitHub）去，然后告诉同事：
「嘿，⼩册的基本功能写完了，分⽀名是 books，谁有空的话帮我
review ⼀下吧。」

git push origin books

然后你的同事明明正好有空，他就从中央仓库拉下来了你的代码开始
读：

明明的电脑：
git pull
git chekcout books

读完以后，明明对你说说，嗯我看完了，我觉得不错，可以合并到
master！

于是你就把 books 合并到了 master 上去：

git checkout master
git pull # merge 之前 pull ⼀下，让 master 更新到和远
程仓库同步
git merge books

紧接着，你把合并后的结果 push 到了中央仓库，并删掉了 books
这个 branch：

git push
git branch -d books
git push origin -d books # ⽤ -d 参数把远程仓库的
branch 也删了

如果同事有意⻅

上⾯讲的是明明对你的代码没有意⻅，⽽假如他在你的代码⾥看到了
问题，例如他跑来对你说：「嘿，你的代码缩进为什么⽤的是
TAB？快改成空格，不然砍死你哦。」

这时，你就可以把你的缩进改成空格，然后做⼀个新的提交，再
push 上去，然后通知他：「我改完啦！」

明明 pull 下来你的新提交看了看：「嗯，这下可以合并了。」

于是你依照上⾯的那⼀套操作，把代码合并进 master，并 push 了
上去，然后删掉了 books。

瞧，代码在同事竖⼤拇指之前都不会正式发布到 master，挺⽅便的
吧？

Pull Request

事实上，上⾯讲的这个流程，还可以利⽤ Pull Request 来进⼀步简
化。

Pull Request 并不是 Git 的内容，⽽是⼀些 Git 仓库服务提供⽅
（例如 GitHub）所提供的⼀种便捷功能，它可以让团队的成员⽅便
地讨论⼀个 branch ，并在讨论结束后⼀键合并这个 branch 到
master。

同样是把写好的 branch 给同事看，使⽤ Pull Request 的话你可以
这样做：

1. 把 branch push 到中央仓库；

2. 在中央仓库处创建⼀个 Pull Request。以 GitHub 为例：

然后你的同事就可以在 GitHub 上看到你创建的 Pull Request
了。他们可以在 GitHub 的这个⻚⾯查看你的 commits，也可
以给你评论表示赞同或提意⻅，你接下来也可以根据他们的意
⻅把新的 commits push 上来，这也⻚⾯会随着你新的 push
⽽展示出最新的 commits。

在讨论结束以后，你们⼀致认为这个 branch 可以合并了，你
只需要点⼀下⻚⾯中那个绿⾊的 "Merge pull request" 按钮，
GitHub 就会⾃动地在中央仓库帮你把 branch 合并到
master 了：

然后你只要在本地 pull ⼀下，把最新的内容拉到你的电脑
上，这件事情就算完成了。

另外，GitHub 还设计了⼀个贴⼼的 "Delete branch" 按钮，
⽅便你在合并之后⼀键删除 branch。

2. ⼀⼈多任务

除了代码分享的便捷，基于 Feature Branch 的⼯作流对于⼀⼈多任
务的⼯作需求也提供了很好的⽀持。

安安⼼⼼做事不被打扰，做完⼀件再做下⼀件⾃然是很美好的事，但
现实往往不能这样。对于程序员来说，⼀种很常⻅的情况是，你正在
认真写着代码，忽然同事过来跟你说：「内个……你这个功能先放⼀
放吧，我们最新讨论出要做另⼀个更重要的功能，你来做⼀下吧。」

其实，虽然这种情况确实有点烦，但如果你是在独⽴的 branch 上
做事，切换任务是很简单的。你只要稍微把⽬前未提交的代码简单收
尾⼀下，然后做⼀个带有「未完成」标记的提交（例如，在提交信息
⾥标上「TODO」），然后回到 master 去创建⼀个新的 branch
就好了。

git checkout master
git checkout -b new_feature

上⾯这两⾏代码有更简单的操作⽅式，不过为了⼩册内
容的简洁性，我就不引⼊更多的内容了，有兴趣的话可
以⾃⼰搜索⼀下。

如果有⼀天需要回来继续做这个 branch，你只要⽤ checkout 切
回来，就可以继续了。

⼩结

这⼀节介绍了 Feature Branching 这种⼯作流。它的概念很简单：

1. 每个新功能都新建⼀个 branch 来写；
2. 写完以后，把代码分享给同事看；写的过程中，也可以分享给

同事讨论。另外，借助 GitHub 等服务提供⽅的 Pull Request
功能，可以让代码分享变得更加⽅便；

3. 分⽀确定可以合并后，把分⽀合并到 master ，并删除分⽀。

这种⼯作流由于功能强⼤，⽽且概念和使⽤⽅式都很简单，所以很受
欢迎。再加上 GitHub 等平台提供了 Pull Request 的⽀持，⽬前这
种⼯作流是商业项⽬开发中最为流⾏的⼯作流。

