
16 | JavaScript执行（一）：Promise里的代码为什么比
setTimeout先执行？
2019-02-23 winter

重学前端 进入课程

讲述：winter
时长 13:24 大小 12.28M

你好，我是 winter。这一部分我们来讲一讲 JavaScript 的执行。

首先我们考虑一下，如果我们是浏览器或者 Node 的开发者，我们该如何使用 JavaScript

引擎。

当拿到一段 JavaScript 代码时，浏览器或者 Node 环境首先要做的就是；传递给

JavaScript 引擎，并且要求它去执行。

然而，执行 JavaScript 并非一锤子买卖，宿主环境当遇到一些事件时，会继续把一段代码

传递给 JavaScript 引擎去执行，此外，我们可能还会提供 API 给 JavaScript 引擎，比如

setTimeout 这样的 API，它会允许 JavaScript 在特定的时机执行。





 下载APP 

所以，我们首先应该形成一个感性的认知：一个 JavaScript 引擎会常驻于内存中，它等待

着我们（宿主）把 JavaScript 代码或者函数传递给它执行。

在 ES3 和更早的版本中，JavaScript 本身还没有异步执行代码的能力，这也就意味着，宿

主环境传递给 JavaScript 引擎一段代码，引擎就把代码直接顺次执行了，这个任务也就是

宿主发起的任务。

但是，在 ES5 之后，JavaScript 引入了 Promise，这样，不需要浏览器的安排，

JavaScript 引擎本身也可以发起任务了。

由于我们这里主要讲 JavaScript 语言，那么采纳 JSC 引擎的术语，我们把宿主发起的任务

称为宏观任务，把 JavaScript 引擎发起的任务称为微观任务。

宏观和微观任务

JavaScript 引擎等待宿主环境分配宏观任务，在操作系统中，通常等待的行为都是一个事

件循环，所以在 Node 术语中，也会把这个部分称为事件循环。

不过，术语本身并非我们需要重点讨论的内容，我们在这里把重点放在事件循环的原理上。

在底层的 C/C++ 代码中，这个事件循环是一个跑在独立线程中的循环，我们用伪代码来表

示，大概是这样的：

我们可以看到，整个循环做的事情基本上就是反复“等待 - 执行”。当然，实际的代码中

并没有这么简单，还有要判断循环是否结束、宏观任务队列等逻辑，这里为了方便你理解，

我就把这些都省略掉了。

这里每次的执行过程，其实都是一个宏观任务。我们可以大概理解：宏观任务的队列就相当

于事件循环。

1

2

3

4

while(TRUE) {
 r = wait();
 execute(r);
}

复制代码

在宏观任务中，JavaScript 的 Promise 还会产生异步代码，JavaScript 必须保证这些异步

代码在一个宏观任务中完成，因此，每个宏观任务中又包含了一个微观任务队列：

有了宏观任务和微观任务机制，我们就可以实现 JS 引擎级和宿主级的任务了，例如：

Promise 永远在队列尾部添加微观任务。setTimeout 等宿主 API，则会添加宏观任务。

接下来，我们来详细介绍一下 Promise。

Promise

Promise 是 JavaScript 语言提供的一种标准化的异步管理方式，它的总体思想是，需要进

行 io、等待或者其它异步操作的函数，不返回真实结果，而返回一个“承诺”，函数的调

用方可以在合适的时机，选择等待这个承诺兑现（通过 Promise 的 then 方法的回调）。

Promise 的基本用法示例如下：

这段代码定义了一个函数 sleep，它的作用是等候传入参数指定的时长。

Promise 的 then 回调是一个异步的执行过程，下面我们就来研究一下 Promise 函数中的

执行顺序，我们来看一段代码示例：

我们执行这段代码后，注意输出的顺序是 a b c。在进入 console.log(“b”) 之前，毫无疑

问 r 已经得到了 resolve，但是 Promise 的 resolve 始终是异步操作，所以 c 无法出现在

b 之前。

接下来我们试试跟 setTimeout 混用的 Promise。

1

2

3

4

5

6

 function sleep(duration) {
 return new Promise(function(resolve, reject) {
 setTimeout(resolve,duration);
 })
 }
 sleep(1000).then(()=> console.log("finished"));

复制代码

1

2

3

4

5

6

 var r = new Promise(function(resolve, reject){
 console.log("a");
 resolve()
 });
 r.then(() => console.log("c"));
 console.log("b")

复制代码

在这段代码中，我设置了两段互不相干的异步操作：通过 setTimeout 执行

console.log(“d”)，通过 Promise 执行 console.log(“c”)

我们发现，不论代码顺序如何，d 必定发生在 c 之后，因为 Promise 产生的是 JavaScript

引擎内部的微任务，而 setTimeout 是浏览器 API，它产生宏任务。

为了理解微任务始终先于宏任务，我们设计一个实验：执行一个耗时 1 秒的 Promise。

这里我们强制了 1 秒的执行耗时，这样，我们可以确保任务 c2 是在 d 之后被添加到任务

队列。

我们可以看到，即使耗时一秒的 c1 执行完毕，再 enque 的 c2，仍然先于 d 执行了，这很

好地解释了微任务优先的原理。

通过一系列的实验，我们可以总结一下如何分析异步执行的顺序：

1

2

3

4

5

6

7

 var r = new Promise(function(resolve, reject){
 console.log("a");
 resolve()
 });
 setTimeout(()=>console.log("d"), 0)
 r.then(() => console.log("c"));
 console.log("b")

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

 setTimeout(()=>console.log("d"), 0)
 var r = new Promise(function(resolve, reject){
 resolve()
 });
 r.then(() => {
 var begin = Date.now();
 while(Date.now() - begin < 1000);
 console.log("c1")
 new Promise(function(resolve, reject){
 resolve()
 }).then(() => console.log("c2"))
 });

复制代码

我们再来看一个稍微复杂的例子：

这是一段非常常用的封装方法，利用 Promise 把 setTimeout 封装成可以用于异步的函

数。

我们首先来看，setTimeout 把整个代码分割成了 2 个宏观任务，这里不论是 5 秒还是 0

秒，都是一样的。

第一个宏观任务中，包含了先后同步执行的 console.log(“a”); 和 console.log(“b”);。

setTimeout 后，第二个宏观任务执行调用了 resolve，然后 then 中的代码异步得到执

行，所以调用了 console.log(“c”)，最终输出的顺序才是： a b c。

Promise 是 JavaScript 中的一个定义，但是实际编写代码时，我们可以发现，它似乎并不

比回调的方式书写更简单，但是从 ES6 开始，我们有了 async/await，这个语法改进跟

Promise 配合，能够有效地改善代码结构。

新特性：async/await

首先我们分析有多少个宏任务；

在每个宏任务中，分析有多少个微任务；

根据调用次序，确定宏任务中的微任务执行次序；

根据宏任务的触发规则和调用次序，确定宏任务的执行次序；

确定整个顺序。

1

2

3

4

5

6

7

8

 function sleep(duration) {
 return new Promise(function(resolve, reject) {
 console.log("b");
 setTimeout(resolve,duration);
 })
 }
 console.log("a");
 sleep(5000).then(()=>console.log("c"));

复制代码

async/await 是 ES2016 新加入的特性，它提供了用 for、if 等代码结构来编写异步的方

式。它的运行时基础是 Promise，面对这种比较新的特性，我们先来看一下基本用法。

async 函数必定返回 Promise，我们把所有返回 Promise 的函数都可以认为是异步函数。

async 函数是一种特殊语法，特征是在 function 关键字之前加上 async 关键字，这样，就

定义了一个 async 函数，我们可以在其中使用 await 来等待一个 Promise。

这段代码利用了我们之前定义的 sleep 函数。在异步函数 foo 中，我们调用 sleep。

async 函数强大之处在于，它是可以嵌套的。我们在定义了一批原子操作的情况下，可以利

用 async 函数组合出新的 async 函数。

1

2

3

4

5

6

7

8

9

10

function sleep(duration) {
 return new Promise(function(resolve, reject) {
 setTimeout(resolve,duration);
 })
}
async function foo(){
 console.log("a")
 await sleep(2000)
 console.log("b")
}

复制代码

1

2

3

4

5

6

7

8

9

10

11

12

13

function sleep(duration) {
 return new Promise(function(resolve, reject) {
 setTimeout(resolve,duration);
 })
}
async function foo(name){
 await sleep(2000)
 console.log(name)
}
async function foo2(){
 await foo("a");
 await foo("b");
}

复制代码

这里 foo2 用 await 调用了两次异步函数 foo，可以看到，如果我们把 sleep 这样的异步操

作放入某一个框架或者库中，使用者几乎不需要了解 Promise 的概念即可进行异步编程

了。

此外，generator/iterator 也常常被跟异步一起来讲，我们必须说明 generator/iterator

并非异步代码，只是在缺少 async/await 的时候，一些框架（最著名的要数 co）使用这样

的特性来模拟 async/await。

但是 generator 并非被设计成实现异步，所以有了 async/await 之后，

generator/iterator 来模拟异步的方法应该被废弃。

结语

在今天的文章里，我们学习了 JavaScript 执行部分的知识，首先我们学习了 JavaScript 的

宏观任务和微观任务相关的知识。我们把宿主发起的任务称为宏观任务，把 JavaScript 引

擎发起的任务称为微观任务。许多的微观任务的队列组成了宏观任务。

除此之外，我们还展开介绍了用 Promise 来添加微观任务的方式，并且介绍了

async/await 这个语法的改进。

最后，留给你一个小练习：我们现在要实现一个红绿灯，把一个圆形 div 按照绿色 3 秒，

黄色 1 秒，红色 2 秒循环改变背景色，你会怎样编写这个代码呢？欢迎你留言讨论。

© 版权归极客邦科技所有，未经许可不得传播售卖。 页面已增加防盗追踪，如有侵权极客邦将依法追究其法律责任。

上一篇 15 | HTML元信息类标签：你知道head里一共能写哪几种标签吗？

下一篇 17 | JavaScript执行（二）：闭包和执行上下文到底是怎么回事？

杨学茂
2019-02-23

 145

function sleep(duration){
 return new Promise(function(resolve){
 setTimeout(resolve, duration);
 })
} …
展开

作者回复: 这个写的完全挑不出毛病，其它同学可以参考。

精选留言 (73)  写留言

whatever
2019-03-02

 41

https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/
为了更深入的理解宏任务和微任务，读了这篇。感觉文中说的微任务总是先于宏任务会让
人产生误解，更准确的说法应该是微任务总会在下一个宏任务之前执行，在本身所属的宏
任务结束后立即执行。

展开

无羡
2019-02-23

 26

const lightEle = document.getElementById('traffic-light');
function changeTrafficLight(color, duration) {
 return new Promise(function(resolve, reject) {
 lightEle.style.background = color;
 setTimeout(resolve, duration); …
展开

作者回复: 这个写的不错，不过，既然都用到了await，是不是可以不用递归呢？

奇奇
2019-02-28

 12

怎么区分是宿主环境还是js引擎发起的任务呢

展开

deiphi
2019-02-26

 9

// 比较原始的写法
function color () {
 console.log('green');

 setTimeout(() => { …
展开

作者回复: 哈哈哈 这个硬核了啊…… 结果倒是对的

不试试Promise吗？ 我讲了这么多呢……

许童童
2019-02-23

 4

async function controlLoop () {
 await changeColor('green', 3000)
 await changeColor('yellow', 1000)
 await changeColor('red', 2000)
 await controlLoop() …
展开

作者回复: 你这个有点问题，执行多了可能爆栈，改改试试？

周序猿
2019-02-26

 3

// 另类的写法
 var lightDiv = document.getElementById('light')
 function wait(seconds){
 return new Promise((resolve)=>{
 setTimeout(resolve,seconds) …
展开

作者回复: 额 这个结果是对的 不过封装成这样 合适吗？

许吉中
2019-02-24

 3

async/await函数属于宏观还是微观？

展开

作者回复: 它产生Promise，当然是微观任务了

NeverEver
2019-02-23 

3

我想到的方法是用Recursion。写一个函数setColor，需要一个参数color，函数里首先把
div的backgroundColor设置color，然后用setTimeout来设置下一个颜色，根据传入的
color相应更改时间和颜色即可

展开

作者回复: 代码写写看呀。 动手是收获最大的。

拒绝第十七...
2019-04-10

 2

let sleep = (color,deep)=>{
 return new Promise(reslove=>{
 setTimeout(()=>reslove(color) ,deep)
 })
 } …
展开

帅气小熊猫
2019-03-22

 2

怎么确定这个微任务属于一个宏任务呢，js主线程跑下来，遇到setTImeout会放到异步队
列宏任务中，那下面的遇到的promise怎么判断出它是属于这个宏任务呢？是不是只有这
个宏任务没有从异步队列中取出，中间所碰到的所有微任务都属于这个宏任务？

oillie
2019-03-02

 2

一个宏任务包含一个微任务队列？还是一个event loop里只有一个微任务队列，虽然不影
响实际效果，但还是想确认下..

Geek_e21f0...
2019-02-26

 2

let lightStates = [{
 color: 'green',
 duration: 3000
 },

 { …
展开

作者回复: 封装不是越复杂越好，太复杂了还不如直接setTimeout了

Jurieo
2019-02-26

 2

哈哈，我自己思考的执行顺序是 同步-异步-回调，成功正确输出了老师你上面的各个代码
的答案。

CaveShao
2019-05-15

 1

function func(color, duration) {
 return new Promise(function(resolve, reject) {
 light.style.backgroundColor = color;
 setTimeout(function() {
 it.next(); …
展开

CaveShao
2019-05-15

 1

let light = document.querySelector('.light');

 function red() {
 return new Promise(function(resolve, reject) {
 light.style.backgroundColor = 'red'; …
展开

王玄
2019-04-11

 1

function changeColor() {
 console.time();
 const timer1 = setTimeout(function () {
 clearTimeout(timer1);

 console.timeEnd(); …
展开

好吃的呆梨
2019-03-15

 1

var element = document.getElementsByClassName('lighter')[0]

function sleep(duration) {
 return new Promise((resolve, reject) => {
 var begin = Date.now(); …
展开

sura
2019-03-04

 1

关于async await 推荐看这个 https://segmentfault.com/q/1010000016147496

clannad-
2019-02-25

 1

const box = document.querySelector('.box');
 const oSpan = box.getElementsByTagName('span')[0];
 const arr = ['green','yellow','red'];
 oSpan.style.backgroundColor = arr[0];
 …
展开

